import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of blazeface model dir.") parser.add_argument( "--image", required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--use_trt", type=ast.literal_eval, default=False, help="Wether to use tensorrt.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() if args.device.lower() == "gpu": option.use_gpu() if args.use_trt: option.use_trt_backend() option.set_trt_input_shape("images", [1, 3, 640, 640]) return option args = parse_arguments() model_dir = args.model model_file = os.path.join(model_dir, "model.pdmodel") params_file = os.path.join(model_dir, "model.pdiparams") config_file = os.path.join(model_dir, "infer_cfg.yml") # Configure runtime and load the model runtime_option = build_option(args) model = fd.vision.facedet.BlazeFace(model_file, params_file, config_file, runtime_option=runtime_option) # Predict image detection results im = cv2.imread(args.image) result = model.predict(im) print(result) # Visualization of prediction Results vis_im = fd.vision.vis_face_detection(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")