# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from fastdeploy import ModelFormat import fastdeploy as fd import numpy as np def load_example_input_datas(): """prewarm datas""" data_list = [] # max size input_1 = np.ones((1, 3, 224, 224), dtype=np.float32) max_inputs = [input_1] data_list.append(tuple(max_inputs)) # min size input_1 = np.ones((1, 3, 224, 224), dtype=np.float32) min_inputs = [input_1] data_list.append(tuple(min_inputs)) # opt size input_1 = np.ones((1, 3, 224, 224), dtype=np.float32) opt_inputs = [input_1] data_list.append(tuple(opt_inputs)) return data_list if __name__ == '__main__': # prewarm_datas prewarm_datas = load_example_input_datas() # download model model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/std_resnet50_script.pt" fd.download(model_url, path=".") option = fd.RuntimeOption() option.use_gpu(0) option.use_poros_backend() option.set_model_path( "std_resnet50_script.pt", model_format=ModelFormat.TORCHSCRIPT) # compile runtime = fd.Runtime(option) runtime.compile(prewarm_datas) # infer input_data_0 = np.random.rand(1, 3, 224, 224).astype("float32") result = runtime.forward(input_data_0) print(result[0].shape)