# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import pytest prompts = ["解释下'温故而知新'", "who are you?"] current_dir = os.path.dirname(os.path.abspath(__file__)) project_root = os.path.abspath(os.path.join(current_dir, "..")) if project_root not in sys.path: sys.path.insert(0, project_root) from tests.model_loader.utils import ( form_model_get_output_topp0, get_torch_model_path, run_with_timeout, ) FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313)) FD_CACHE_QUEUE_PORT = int(os.getenv("FD_CACHE_QUEUE_PORT", 8333)) model_param_map = { "Qwen3-30B-A3B-FP8": { "tensor_parallel_size": 2, "quantizations": [ { "quant_type": "None", "backend": "triton", "env": {"DG_NVCC_OVERRIDE_CPP_STANDARD": "17"}, }, ], }, } params = [] for model, cfg in model_param_map.items(): for q in cfg["quantizations"]: if isinstance(q, dict): quant, backend, env = q["quant_type"], q.get("backend", "default"), q.get("env", {}) else: quant, backend, env = q, "default", {} params.append( pytest.param( model, cfg.get("tensor_parallel_size", 1), cfg.get("max_model_len", 1024), quant, cfg.get("max_tokens", 32), env, marks=[pytest.mark.core_model], id=f"offline_quant_{model}.{quant}.{backend}", ) ) @pytest.mark.parametrize( "model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens,env", params, ) def test_offline_model( fd_runner, model_name_or_path: str, tensor_parallel_size: int, max_model_len: int, max_tokens: int, quantization: str, env, monkeypatch, ) -> None: torch_model_path = get_torch_model_path(model_name_or_path) if env: for k, v in env.items(): monkeypatch.setenv(k, v) _ = run_with_timeout( target=form_model_get_output_topp0, args=( fd_runner, torch_model_path, tensor_parallel_size, max_model_len, max_tokens, quantization, "default_v1", FD_ENGINE_QUEUE_PORT, prompts, FD_CACHE_QUEUE_PORT, ), )