English | [简体中文](README_CN.md) # Example of PaddleClas models Python multi-thread/multi-process Deployment Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. Install the FastDeploy Python whl package. Please refer to [FastDeploy Python Installation](../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) This directory provides example file `multi_thread_process.py` to fast deploy multi-thread/multi-process ResNet50_vd on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download deployment example code git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/tutorials/multi_thread/python # Download the ResNet50_vd model file and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz tar -xvf ResNet50_vd_infer.tgz wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg # CPU multi-thread inference python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --thread_num 1 # CPU multi-process inference python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device cpu --topk 1 --use_multi_process True --process_num 1 # GPU multi-thread inference python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --thread_num 1 # GPU multi-process inference python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --topk 1 --use_multi_process True --process_num 1 # Use TensorRT multi-thread inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.) python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --thread_num 1 # Use TensorRT multi-process inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.) python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True --topk 1 --use_multi_process True --process_num 1 # IPU multi-thread inference(Attention: It is somewhat time-consuming for the operation of model serialization when running IPU inference for the first time. Please be patient.) python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --thread_num 1 # IPU multi-process inference(Attention: It is somewhat time-consuming for the operation of model serialization when running IPU inference for the first time. Please be patient.) python multi_thread_process.py --model ResNet50_vd_infer --image_path ILSVRC2012_val_00000010.jpeg --device ipu --topk 1 --use_multi_process True --process_num 1 ``` >> **Notice**: `--image_path` can be the path of the pictures folder The result returned after running is as follows ```bash ClassifyResult( label_ids: 153, scores: 0.686229, ) ```