import fastdeploy as fd import cv2 def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of modnet onnx model.") parser.add_argument( "--image", required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--use_trt", type=ast.literal_eval, default=False, help="Wether to use tensorrt.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() if args.device.lower() == "gpu": option.use_gpu() if args.use_trt: option.use_trt_backend() option.set_trt_input_shape("input", [1, 3, 256, 256]) return option args = parse_arguments() # 配置runtime,加载模型 runtime_option = build_option(args) model = fd.vision.matting.MODNet(args.model, runtime_option=runtime_option) #设置推理size, 必须和模型文件一致 model.size = (256, 256) # 预测图片检测结果 im = cv2.imread(args.image) result = model.predict(im.copy()) # 预测结果可视化 vis_im = fd.vision.vis_matting_alpha(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")