# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from typing import Union, List import logging from .... import FastDeployModel, ModelFormat from .... import c_lib_wrap as C class PaddleDetPreprocessor: def __init__(self, config_file): """Create a preprocessor for PaddleDetection Model from configuration file :param config_file: (str)Path of configuration file, e.g ppyoloe/infer_cfg.yml """ self._preprocessor = C.vision.detection.PaddleDetPreprocessor( config_file) def run(self, input_ims): """Preprocess input images for PaddleDetection Model :param: input_ims: (list of numpy.ndarray)The input image :return: list of FDTensor, include image, scale_factor, im_shape """ return self._preprocessor.run(input_ims) class PaddleDetPostprocessor: def __init__(self): """Create a postprocessor for PaddleDetection Model """ self._postprocessor = C.vision.detection.PaddleDetPostprocessor() def run(self, runtime_results): """Postprocess the runtime results for PaddleDetection Model :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime :return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size) """ return self._postprocessor.run(runtime_results) class PPYOLOE(FastDeployModel): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a PPYOLOE model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g ppyoloe/model.pdmodel :param params_file: (str)Path of parameters file, e.g ppyoloe/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PPYOLOE model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PPYOLOE( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PPYOLOE model initialize failed." def predict(self, im): """Detect an input image :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :return: DetectionResult """ assert im is not None, "The input image data is None." return self._model.predict(im) def batch_predict(self, images): """Detect a batch of input image list :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return list of DetectionResult """ return self._model.batch_predict(images) @property def preprocessor(self): """Get PaddleDetPreprocessor object of the loaded model :return PaddleDetPreprocessor """ return self._model.preprocessor @property def postprocessor(self): """Get PaddleDetPostprocessor object of the loaded model :return PaddleDetPostprocessor """ return self._model.postprocessor class PPYOLO(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a PPYOLO model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g ppyolo/model.pdmodel :param params_file: (str)Path of parameters file, e.g ppyolo/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PPYOLO model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PPYOLO( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PPYOLO model initialize failed." class PaddleYOLOX(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a YOLOX model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g yolox/model.pdmodel :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PaddleYOLOX model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PaddleYOLOX( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PaddleYOLOX model initialize failed." class PicoDet(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a PicoDet model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g picodet/model.pdmodel :param params_file: (str)Path of parameters file, e.g picodet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PicoDet model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PicoDet( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PicoDet model initialize failed." class FasterRCNN(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a FasterRCNN model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g fasterrcnn/model.pdmodel :param params_file: (str)Path of parameters file, e.g fasterrcnn/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "FasterRCNN model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.FasterRCNN( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "FasterRCNN model initialize failed." class YOLOv3(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a YOLOv3 model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g yolov3/model.pdmodel :param params_file: (str)Path of parameters file, e.g yolov3/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "YOLOv3 model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.YOLOv3( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "YOLOv3 model initialize failed." class MaskRCNN(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a MaskRCNN model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g fasterrcnn/model.pdmodel :param params_file: (str)Path of parameters file, e.g fasterrcnn/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "MaskRCNN model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.MaskRCNN( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "MaskRCNN model initialize failed." def batch_predict(self, images): """Detect a batch of input image list, batch_predict is not supported for maskrcnn now. :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return list of DetectionResult """ raise Exception( "batch_predict is not supported for MaskRCNN model now.")