// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { namespace detection { /*! @brief Preprocessor object for PaddleDet serials model. */ class FASTDEPLOY_DECL PaddleDetPreprocessor { public: PaddleDetPreprocessor() = default; /** \brief Create a preprocessor instance for PaddleDet serials model * * \param[in] config_file Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml */ explicit PaddleDetPreprocessor(const std::string& config_file); /** \brief Process the input image and prepare input tensors for runtime * * \param[in] images The input image data list, all the elements are returned by cv::imread() * \param[in] outputs The output tensors which will feed in runtime, include image, scale_factor, im_shape * \return true if the preprocess successed, otherwise false */ bool Run(std::vector* images, std::vector* outputs); private: bool BuildPreprocessPipelineFromConfig(const std::string& config_file); std::vector> processors_; bool initialized_ = false; }; } // namespace detection } // namespace vision } // namespace fastdeploy