""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import inspect import os import time import traceback import uuid from copy import copy from http import HTTPStatus import numpy as np from filelock import FileLock from fastdeploy import envs from fastdeploy.entrypoints.openai.utils import DealerConnectionManager from fastdeploy.envs import FD_SUPPORT_MAX_CONNECTIONS from fastdeploy.eplb.utils import RedundantExpertWorkload from fastdeploy.input.preprocess import InputPreprocessor from fastdeploy.inter_communicator import ( IPCSignal, KVCacheStatus, ModelWeightsStatus, PrefixTreeStatus, RearrangeExpertStatus, ZmqIpcClient, ) from fastdeploy.metrics.work_metrics import work_process_metrics from fastdeploy.platforms import current_platform from fastdeploy.trace.constants import LoggingEventName from fastdeploy.trace.trace_logger import print as trace_print from fastdeploy.utils import ( EngineError, ParameterError, StatefulSemaphore, api_server_logger, ) class EngineClient: """ EngineClient is a class that handles the communication between the client and the server. """ def __init__( self, model_name_or_path, tokenizer, max_model_len, tensor_parallel_size, pid, port, limit_mm_per_prompt, mm_processor_kwargs, config, reasoning_parser=None, data_parallel_size=1, enable_logprob=False, workers=1, tool_parser=None, enable_prefix_caching=None, splitwise_role=None, max_processor_cache=0, ): self.config = config self.model_config = config.model_config self.enable_mm = self.model_config.enable_mm enable_processor_cache = self.enable_mm and max_processor_cache > 0 input_processor = InputPreprocessor( self.model_config, reasoning_parser, limit_mm_per_prompt, mm_processor_kwargs, tool_parser, enable_processor_cache, ) self.enable_logprob = enable_logprob self.reasoning_parser = reasoning_parser self.data_processor = input_processor.create_processor() self.max_model_len = max_model_len self.enable_prefix_caching = enable_prefix_caching self.enable_splitwise = splitwise_role != "mixed" max_chips_per_node = 16 if current_platform.is_iluvatar() else 8 if self.enable_mm and self.enable_prefix_caching: from fastdeploy.cache_manager.cache_data import ( is_mm_model_disable_prefix_cache, ) self.disable_prefix_mm = is_mm_model_disable_prefix_cache(self.model_config) if tensor_parallel_size <= max_chips_per_node: self.is_master = True else: self.is_master = False if self.config.eplb_config.enable_eplb: self.init_eplb_signals(ipc_signal_suffix=port) array_size = min(max_chips_per_node, tensor_parallel_size) self.worker_healthy_live_recorded_time_array = np.zeros(shape=[array_size], dtype=np.int32) self.worker_healthy_live_signal = IPCSignal( name="worker_healthy_live_signal", array=self.worker_healthy_live_recorded_time_array, dtype=np.int32, suffix=port, create=False, ) self.semaphore = StatefulSemaphore((FD_SUPPORT_MAX_CONNECTIONS + workers - 1) // workers) model_weights_status = np.zeros([1], dtype=np.int32) self.model_weights_status_signal = IPCSignal( name="model_weights_status", array=model_weights_status, dtype=np.int32, suffix=port, create=False, ) prefix_tree_status = np.zeros([1], dtype=np.int32) self.prefix_tree_status_signal = IPCSignal( name="prefix_tree_status", array=prefix_tree_status, dtype=np.int32, suffix=port, create=False, ) kv_cache_status = np.zeros([1], dtype=np.int32) self.kv_cache_status_signal = IPCSignal( name="kv_cache_status", array=kv_cache_status, dtype=np.int32, suffix=port, create=False, ) self.connection_manager = DealerConnectionManager( pid, max_connections=int(os.getenv("FD_DEALER_CONNECTIONS", 50)) ) self.connection_initialized = False self.clear_update_lock = FileLock(f"/tmp/fd_weight_clear_update_lock__pid{pid}_port{port}.lock") def init_eplb_signals(self, ipc_signal_suffix): """ Initialize eplb signals. """ if self.config.parallel_config.tensor_parallel_rank != 0: # only TP rank 0 need to init eplb signals, rank 0 manage all EPLB signals for all TP ranks return self.signal_clear_experts_token_stats_list = [] self.local_experts_token_stats_array_list = [] self.expert_tokens_stats_array_list = [] self.signal_update_weight_from_disk_array_list = [] self.update_weight_from_disk_result_list = [] dp_ipc_signal_suffix = f"{ipc_signal_suffix}_dp{self.config.parallel_config.local_data_parallel_id}" rearrange_experts_status = np.zeros([1], dtype=np.int32) self.rearrange_experts_signal = IPCSignal( name="rearrange_experts_status", array=rearrange_experts_status, dtype=np.int32, suffix=dp_ipc_signal_suffix, create=False, ) rearrange_experts_ips_size_array = np.zeros([1], dtype=np.int32) self.rearrange_experts_ips_size_signal = IPCSignal( name="rearrange_experts_ips_size", array=rearrange_experts_ips_size_array, dtype=np.int32, suffix=dp_ipc_signal_suffix, create=False, ) self.shm_rearrange_experts_ips_list = IPCSignal( name="rearrange_experts_ips_list", shm_size=self.config.eplb_config.redundant_expert_ip_shm_size, suffix=dp_ipc_signal_suffix, create=False, ) signal_update_weight_from_tensor = np.zeros([1], dtype=np.int32) self.signal_update_weight_from_tensor_array = IPCSignal( name="signal_update_weight_from_tensor", array=signal_update_weight_from_tensor, dtype=np.int32, suffix=dp_ipc_signal_suffix, create=False, ) for tp_rank_id in range(self.config.parallel_config.tensor_parallel_size): tp_ipc_signal_suffix = f"{dp_ipc_signal_suffix}_tp{tp_rank_id}" signal_clear_experts_token_stats = np.zeros([1], dtype=np.int32) self.signal_clear_experts_token_stats_list.append( IPCSignal( name="signal_clear_experts_token_stats", array=signal_clear_experts_token_stats, dtype=np.int32, suffix=tp_ipc_signal_suffix, create=False, ) ) signal_update_weight_from_disk = np.zeros([1], dtype=np.int32) self.signal_update_weight_from_disk_array_list.append( IPCSignal( name="signal_update_weight_from_disk", array=signal_update_weight_from_disk, dtype=np.int32, suffix=tp_ipc_signal_suffix, create=False, ) ) result_update_weight_from_disk = np.zeros([1], dtype=np.int32) self.update_weight_from_disk_result_list.append( IPCSignal( name="result_update_weight_from_disk", array=result_update_weight_from_disk, dtype=np.int32, suffix=tp_ipc_signal_suffix, create=False, ) ) experts_token_stats = np.zeros( (self.config.model_config.num_hidden_layers, self.config.model_config.moe_num_experts), dtype=np.int32, ) self.expert_tokens_stats_array_list.append( IPCSignal( name="all_experts_token_stats", array=experts_token_stats, dtype=np.int32, suffix=tp_ipc_signal_suffix, create=False, ) ) self.local_experts_token_stats_array_list.append( IPCSignal( name="local_experts_token_stats", array=experts_token_stats, dtype=np.int32, suffix=tp_ipc_signal_suffix, create=False, ) ) def create_zmq_client(self, model, mode): """ Create a ZMQ client. """ self.zmq_client = ZmqIpcClient(model, mode) self.zmq_client.connect() async def format_and_add_data(self, prompts: dict): """ Format the request data and send the request to the server. """ if "request_id" not in prompts: request_id = str(uuid.uuid4()) prompts["request_id"] = request_id if "max_tokens" not in prompts: prompts["max_tokens"] = self.max_model_len - 1 await self.add_requests(prompts) return prompts["prompt_token_ids"] def _check_mm_disable_prefix_cache(self, task): is_multimodal_data = False if self.disable_prefix_mm: multimodal_inputs = task.get("multimodal_inputs", []) if multimodal_inputs: token_type_ids = multimodal_inputs.get("token_type_ids", []) if token_type_ids: is_multimodal_data = np.sum(token_type_ids) > 0 return is_multimodal_data async def add_requests(self, task): """ Add a new request to the queue. Args: task: Request A dictionary representing the request. sampling_params: A dictionary representing the sampling parameters. Returns: None """ task["preprocess_start_time"] = time.time() trace_print(LoggingEventName.PREPROCESSING_START, task["request_id"], task.get("user", "")) try: chat_template_kwargs = task.get("chat_template_kwargs") or {} chat_template_kwargs.update({"chat_template": task.get("chat_template")}) task["chat_template_kwargs"] = chat_template_kwargs if inspect.iscoroutinefunction(self.data_processor.process_request_dict): await self.data_processor.process_request_dict(task, self.max_model_len) else: self.data_processor.process_request_dict(task, self.max_model_len) if self.enable_mm and self.enable_prefix_caching: if self._check_mm_disable_prefix_cache(task): api_server_logger.error( "The current service does not support processing requests containing multimodal data when prefix cache is enabled. Please send only text-based requests or disable prefix cache" ) raise EngineError( "The current service does not support processing requests containing multimodal data when prefix cache is enabled. Please send only text-based requests or disable prefix cache", error_code=400, ) task["prompt_token_ids_len"] = len(task["prompt_token_ids"]) input_ids_len = task["prompt_token_ids_len"] task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens")) min_tokens = task.get("min_tokens", 1) if "messages" in task: del task["messages"] api_server_logger.info(f"task['max_tokens']:{task['max_tokens']}") work_process_metrics.request_params_max_tokens.observe(task["max_tokens"]) work_process_metrics.prompt_tokens_total.inc(input_ids_len) work_process_metrics.request_prompt_tokens.observe(input_ids_len) except Exception as e: api_server_logger.error(f"add_requests error: {e}, {str(traceback.format_exc())}") raise EngineError(str(e), error_code=400) if input_ids_len + min_tokens >= self.max_model_len: error_msg = ( f"Input text is too long, input_ids_len ({input_ids_len}) " f"+ min_tokens({min_tokens}) >= max_model_len({self.max_model_len})" ) api_server_logger.error(error_msg) raise EngineError(error_msg, error_code=400) if input_ids_len > self.max_model_len: error_msg = ( f"Length of input token({input_ids_len}) exceeds the limit max_model_len({self.max_model_len})." ) api_server_logger.error(error_msg) raise EngineError(error_msg, error_code=400) if "stop_seqs_len" in task: stop_seqs_len = task["stop_seqs_len"] max_stop_seqs_num = envs.FD_MAX_STOP_SEQS_NUM if len(stop_seqs_len) > max_stop_seqs_num: error_msg = ( f"Length of stop ({stop_seqs_len}) exceeds the limit max_stop_seqs_num({max_stop_seqs_num})." "Please reduce the number of stop or set a lager max_stop_seqs_num by `FD_MAX_STOP_SEQS_NUM`" ) api_server_logger.error(error_msg) raise EngineError(error_msg, error_code=400) stop_seqs_max_len = envs.FD_STOP_SEQS_MAX_LEN for single_stop_seq_len in stop_seqs_len: if single_stop_seq_len > stop_seqs_max_len: error_msg = ( f"Length of stop_seqs({single_stop_seq_len}) exceeds the limit stop_seqs_max_len({stop_seqs_max_len})." "Please reduce the length of stop sequences or set a larger stop_seqs_max_len by `FD_STOP_SEQS_MAX_LEN`" ) api_server_logger.error(error_msg) raise EngineError(error_msg, error_code=400) task["preprocess_end_time"] = time.time() preprocess_cost_time = task["preprocess_end_time"] - task["preprocess_start_time"] api_server_logger.info( f"Cache request with request_id ({task.get('request_id')}), " f"preprocess time cost {preprocess_cost_time}" ) self.valid_parameters(task) api_server_logger.debug(f"Receive task: {task}") n = task.get("n", 1) try: request_id_idx = task.get("request_id") parts = request_id_idx.rsplit("_", 1) if len(parts) == 1: self._send_task(task) else: request_id = parts[0] index = int(parts[1]) for i in range(index * n, (index + 1) * n): child_task = copy(task) child_task["request_id"] = f"{request_id}_{i}" self._send_task(child_task) except Exception as e: api_server_logger.error(f"zmq_client send task error: {e}, {str(traceback.format_exc())}") raise EngineError(str(e), error_code=400) def _send_task(self, task): if not self.enable_mm: self.zmq_client.send_json(task) else: self.zmq_client.send_pyobj(task) def valid_parameters(self, data): """ Validate stream options 超参数(top_p、seed、frequency_penalty、temperature、presence_penalty)的校验逻辑 前置到了ChatCompletionRequest/CompletionRequest中 """ if data.get("max_tokens") is not None: if data["max_tokens"] < 1 or data["max_tokens"] >= self.max_model_len: api_server_logger.error( f"req_id:{data['request_id']}, max_tokens must be defined [1, {self.max_model_len}), but now it's {data['max_tokens']}." ) raise ValueError( f"max_tokens can be defined [1, {self.max_model_len}), but now it's {data['max_tokens']}." ) if data.get("reasoning_max_tokens") is not None: if data["reasoning_max_tokens"] < 1: raise ParameterError("reasoning_max_tokens", "reasoning_max_tokens must be greater than 1") if data["reasoning_max_tokens"] > data["max_tokens"]: data["reasoning_max_tokens"] = data["max_tokens"] api_server_logger.warning( f"req_id: {data['request_id']}, reasoning_max_tokens exceeds max_tokens, the value of reasoning_max_tokens will be adjusted to {data['max_tokens']}" ) if data.get("temperature") is not None and abs(data["temperature"]) < 1e-6: data["temperature"] = 1e-6 # logprobs logprobs = data.get("logprobs") top_logprobs = None if isinstance(logprobs, bool) and logprobs: if not self.enable_logprob: err_msg = "Logprobs is disabled, please enable it in startup config." api_server_logger.error(err_msg) raise ParameterError("logprobs", err_msg) top_logprobs = data.get("top_logprobs") elif isinstance(logprobs, int): top_logprobs = logprobs elif logprobs: raise ParameterError("logprobs", "Invalid type for 'logprobs'") # enable_logprob if top_logprobs: if not self.enable_logprob: err_msg = "Logprobs is disabled, please enable it in startup config." api_server_logger.error(err_msg) raise ParameterError("logprobs", err_msg) if not isinstance(top_logprobs, int): err_type = type(top_logprobs).__name__ err_msg = f"Invalid type for 'top_logprobs': expected int but got {err_type}." api_server_logger.error(err_msg) raise ParameterError("top_logprobs", err_msg) if top_logprobs < 0: err_msg = f"Invalid 'top_logprobs': must be >= 0, got {top_logprobs}." api_server_logger.error(err_msg) raise ParameterError("top_logprobs", err_msg) if top_logprobs > 20: err_msg = "Invalid value for 'top_logprobs': must be <= 20." api_server_logger.error(err_msg) raise ParameterError("top_logprobs", err_msg) def check_health(self, time_interval_threashold=30): """ Check the health of the model server by checking whether all workers are alive. """ if self.worker_healthy_live_signal.value[0]: elapsed_time = time.time() - self.worker_healthy_live_signal.value[0] if elapsed_time > time_interval_threashold: return False, "Worker Service Not Healthy" return True, "" def is_workers_alive(self): """ Check the health of the model server by checking whether all workers are alive. """ if self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL: return True, "" else: return False, "No model weight enabled" def update_model_weight(self, timeout=300): """ Update the model weight by sending a signal to the server. 1 : worker receive the signal and start to update model weight 2 : worker update finish and notify client """ with self.clear_update_lock: if self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL: return True, "" if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING: return False, "worker is updating model weight already" if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING: return False, "worker is clearing model weight, cannot update now" self.model_weights_status_signal.value[0] = ModelWeightsStatus.UPDATING if self.enable_prefix_caching or self.enable_splitwise: self.kv_cache_status_signal.value[0] = KVCacheStatus.UPDATING if self.enable_prefix_caching: self.prefix_tree_status_signal.value[0] = PrefixTreeStatus.UPDATING api_server_logger.info(f"start update model weight {self.model_weights_status_signal.value}") all_updated = False while timeout >= 0 and not all_updated: api_server_logger.info( f"Updating model weights.. " f"model_weights_status: {self.model_weights_status_signal.value[0]}, " f"prefix_tree_status: {self.prefix_tree_status_signal.value[0]}, " f"kv_cache_status: {self.kv_cache_status_signal.value[0]} " ) weight_updated = self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL cache_updated = self.kv_cache_status_signal.value[0] == KVCacheStatus.NORMAL prefix_updated = self.prefix_tree_status_signal.value[0] == PrefixTreeStatus.NORMAL if self.enable_prefix_caching or self.enable_splitwise: if self.enable_prefix_caching: all_updated = weight_updated and cache_updated and prefix_updated else: all_updated = weight_updated and cache_updated else: all_updated = weight_updated time.sleep(1) timeout -= 1 if timeout < 0: return False, "Update model weight timeout" time.sleep(1) return True, "" def clear_load_weight(self, timeout=300): """ Clear the load weight status. -1 : worker receive the signal and start to clear model weight -2 : worker clear finish and notify client """ with self.clear_update_lock: if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARED: return True, "" if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING: return False, "worker is clearing model weight already" if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING: return False, "worker is updating model weight, cannot clear now" self.model_weights_status_signal.value[0] = ModelWeightsStatus.CLEARING if self.enable_prefix_caching or self.enable_splitwise: self.kv_cache_status_signal.value[0] = KVCacheStatus.CLEARING if self.enable_prefix_caching: self.prefix_tree_status_signal.value[0] = PrefixTreeStatus.CLEARING api_server_logger.info(f"start clear model weight {self.model_weights_status_signal.value}") all_cleared = False while timeout >= 0 and not all_cleared: api_server_logger.info( f"Clearing model weights.. " f"model_weights_status: {self.model_weights_status_signal.value[0]}, " f"prefix_tree_status: {self.prefix_tree_status_signal.value[0]}, " f"kv_cache_status: {self.kv_cache_status_signal.value[0]} " ) weight_cleared = self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARED cache_cleared = self.kv_cache_status_signal.value[0] == KVCacheStatus.CLEARED prefix_cleared = self.prefix_tree_status_signal.value[0] == PrefixTreeStatus.CLEARED if self.enable_prefix_caching or self.enable_splitwise: if self.enable_prefix_caching: all_cleared = weight_cleared and cache_cleared and prefix_cleared else: all_cleared = weight_cleared and cache_cleared else: all_cleared = weight_cleared time.sleep(1) timeout -= 1 if timeout < 0: return False, "Clear model weight timeout" time.sleep(1) return True, "" def check_model_weight_status(self): return self.model_weights_status_signal.value[0] < 0 async def rearrange_experts(self, request_dict: dict): """ rearrange experts Args: request_dict (dict): request body Returns: tuple: response body, status code """ eplb_config = self.config.eplb_config if not eplb_config.enable_eplb: content = {"code": 1, "msg": "redundant expert is disabled"} status_code = HTTPStatus.BAD_REQUEST return content, status_code if ( request_dict.get("user", "") != eplb_config.redundant_expert_api_user or request_dict.get("passwd", "") != eplb_config.redundant_expert_api_password ): content = {"code": 1, "msg": "user or passwd is invalid"} status_code = HTTPStatus.UNAUTHORIZED return content, status_code if self.config.parallel_config.tensor_parallel_rank != 0: content = { "code": 1, "msg": f"actual rank {self.config.parallel_config.tensor_parallel_rank}, expect rank 0", } status_code = HTTPStatus.BAD_REQUEST return content, status_code action = request_dict.get("action", "") api_server_logger.info(f"redundant_expert: rearrange_experts recv request, action {action}") if action == "": # action: start rearrange experts # params: {'user': 'xxx', 'passwd': 'xxx', 'ips': ['10.54.99.77:8000', '10.54.99.77:8300']} if self.rearrange_experts_signal.value[0] != RearrangeExpertStatus.FREE.value: content = { "code": 1, "msg": f"rearrange is doing. actual status {self.rearrange_experts_signal.value[0]}, expect status {RearrangeExpertStatus.FREE.value}", } status_code = HTTPStatus.BAD_REQUEST if "ips" not in request_dict and content is None: content = {"code": 1, "msg": "ips in request is None"} status_code = HTTPStatus.BAD_REQUEST if content is not None: return content, status_code data_bytes = (";".join(request_dict["ips"])).encode("utf-8") data_size = len(data_bytes) if data_size > eplb_config.redundant_expert_ip_shm_size: content = { "code": 1, "msg": f"actual ips size {data_size}, max limit {eplb_config.redundant_expert_ip_shm_size}", } status_code = HTTPStatus.INTERNAL_SERVER_ERROR else: self.rearrange_experts_ips_size_signal.value[0] = data_size self.shm_rearrange_experts_ips_list.shm.buf[:data_size] = data_bytes content = {"code": 0, "msg": "ok"} status_code = HTTPStatus.OK return content, status_code elif action == "recv_expert_weight": # action: receive global expert workload, and begin update weight from disk # params: {'user': 'xxx', 'passwd': 'xxx', 'weight': (layers, experts)} if "data" not in request_dict or not isinstance(request_dict["data"], list): content = {"code": 1, "msg": "data not in request or data is not a list"} status_code = HTTPStatus.BAD_REQUEST else: weight = np.array(request_dict["data"], dtype=np.int32) for idx in range(len(self.expert_tokens_stats_array_list)): self.expert_tokens_stats_array_list[idx].value[:] = weight[:] self.signal_update_weight_from_disk_array_list[idx].value[0] = 1 content = {"code": 0, "msg": "ok"} status_code = HTTPStatus.OK return content, status_code elif action == "update_weight_from_tensor": if self.config.scheduler_config.splitwise_role != "prefill" and content is None: content = { "code": 1, "msg": f"actual role {self.config.scheduler_config.splitwise_role}, expect role prefill", } status_code = HTTPStatus.BAD_REQUEST if self.rearrange_experts_signal.value[0] != RearrangeExpertStatus.LOAD_SUCC.value and content is None: content = { "code": 1, "msg": f"actual status {self.rearrange_experts_signal.value[0]}, expect status {RearrangeExpertStatus.LOAD_SUCC.value}", } status_code = HTTPStatus.BAD_REQUEST if content is None: self.signal_update_weight_from_tensor_array.value[0] = 1 content = {"code": 0, "msg": "ok"} status_code = HTTPStatus.OK return content, status_code else: content = {"code": 1, "msg": f"invalid action {action}"} status_code = HTTPStatus.BAD_REQUEST return content, status_code async def get_per_expert_tokens_stats(self, request_dict: dict): """ get per expert tokens stats Args: request_dict (dict): request body Returns: tuple: response body, status code """ eplb_config = self.config.eplb_config if not eplb_config.enable_eplb: content = {"code": 1, "msg": "redundant expert is disabled"} status_code = HTTPStatus.BAD_REQUEST return content, status_code if ( request_dict.get("user", "") != eplb_config.redundant_expert_api_user or request_dict.get("passwd", "") != eplb_config.redundant_expert_api_password ): content = {"code": 1, "msg": "user or passwd is invalid"} status_code = HTTPStatus.UNAUTHORIZED return content, status_code if self.config.parallel_config.tensor_parallel_rank != 0: content = { "code": 1, "msg": f"actual rank {self.config.parallel_config.tensor_parallel_rank}, expect rank 0", } status_code = HTTPStatus.BAD_REQUEST return content, status_code if "clear_stat" in request_dict and request_dict["clear_stat"]: for clear_experts_token_stats in self.signal_clear_experts_token_stats_list: clear_experts_token_stats.value[0] = 1 local_experts_list = [] for local_experts_token_stats in self.local_experts_token_stats_array_list: local_experts_list.append(local_experts_token_stats.value.tolist()) content = {"code": 0, "msg": "ok", "data": local_experts_list} status_code = HTTPStatus.OK return content, status_code async def check_redundant(self, request_dict: dict): """ check redundant Args: request_dict (dict): request body Returns: tuple: response body, status code """ content, status_code = None, HTTPStatus.OK eplb_config = self.config.eplb_config if not eplb_config.enable_eplb: content = {"code": 1, "msg": "redundant expert is disabled"} status_code = HTTPStatus.BAD_REQUEST return content, status_code if ( request_dict.get("user", "") != eplb_config.redundant_expert_api_user or request_dict.get("passwd", "") != eplb_config.redundant_expert_api_password ): content = {"code": 1, "msg": "user or passwd is invalid"} status_code = HTTPStatus.UNAUTHORIZED return content, status_code if self.config.parallel_config.tensor_parallel_rank != 0: content = { "code": 1, "msg": f"actual rank {self.config.parallel_config.tensor_parallel_rank}, expect rank 0", } status_code = HTTPStatus.BAD_REQUEST return content, status_code action = request_dict.get("action", "") if action == "": status = "unknown" try: status = RearrangeExpertStatus(self.rearrange_experts_signal.value[0]).name except Exception: # Ignore errors if status cannot be determined; default to "unknown" pass content = {"code": 0, "msg": "ok", "status": status} get_workloads = False if "check_get_workloads" not in request_dict else request_dict["check_get_workloads"] if get_workloads: content["data"], content["msg"] = RedundantExpertWorkload(eplb_config.redundant_expert_meta_dir).load() status_code = HTTPStatus.OK elif action == "check_load_weight_result": update_weight_from_disk_list = [] for update_weight_result in self.update_weight_from_disk_result_list: update_weight_from_disk_list.append(update_weight_result.value[0].tolist()) content = {"code": 0, "msg": "ok", "data": update_weight_from_disk_list} status_code = HTTPStatus.OK return content, status_code