[English](README.md) | 简体中文 # PaddleSeg C++部署示例 本目录下提供`infer.cc`快速完成PP-LiteSeg在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。 在部署前,需确认以下两个步骤 - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/download_prebuilt_libraries.md) 【注意】如你部署的为**PP-Matting**、**PP-HumanMatting**以及**ModNet**请参考[Matting模型部署](../../../matting) 以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.0以上(x.x.x>=1.0.0) ```bash #下载部署示例代码 git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/examples/vision/segmentation/paddleseg/cpp-gpu/cpp mkdir build cd build # 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载PP-LiteSeg模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz tar -xvf PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer.tgz wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png # CPU推理 ./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 0 # GPU推理 ./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 1 # GPU上TensorRT推理 ./infer_demo PP_LiteSeg_B_STDC2_cityscapes_without_argmax_infer cityscapes_demo.png 2 ``` 运行完成可视化结果如下图所示
> **注意:** 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: - [如何在Windows中使用FastDeploy C++ SDK](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/use_sdk_on_windows.md) ## PaddleSeg C++接口 ### PaddleSeg类 ```c++ fastdeploy::vision::segmentation::PaddleSegModel( const string& model_file, const string& params_file = "", const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE) ``` PaddleSegModel模型加载和初始化,其中model_file为导出的Paddle模型格式。 **参数** > * **model_file**(str): 模型文件路径 > * **params_file**(str): 参数文件路径 > * **config_file**(str): 推理部署配置文件 > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 > * **model_format**(ModelFormat): 模型格式,默认为Paddle格式 #### Predict函数 > ```c++ > PaddleSegModel::Predict(const cv::Mat &im, SegmentationResult *result) > ``` > > 模型预测接口,输入图像直接输出检测结果。 > > **参数** > > > * **im**: 输入图像,注意需为HWC,BGR格式 > > * **result**: 分割结果,包括分割预测的标签以及标签对应的概率值, SegmentationResult结构体说明参考[SegmentationResult结构体介绍](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/api/vision_results/segmentation_result_CN.md) ### 类成员属性 #### 预处理参数 用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果 > > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`true`表明输入图片是竖屏,即height大于width的图片 #### 后处理参数 > > * **apply_softmax**(bool): 当模型导出时,并未指定`apply_softmax`参数,可通过此设置此参数为`true`,将预测的输出分割标签(label_map)对应的概率结果(score_map)做softmax归一化处理 ## 快速链接 - [PaddleSeg模型介绍](../../) - [Python部署](../python) ## 常见问题 - [如何将模型预测结果SegmentationResult转为numpy格式](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/api/vision_results/segmentation_result_CN.md) - [如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md) - [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md) - [PaddleSeg C++ API文档](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/cpp/html/namespacefastdeploy_1_1vision_1_1segmentation.html) - [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md) - [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)