English | [简体中文](README_CN.md) # PaddleSeg C++ Deployment Example This directory provides examples that `infer.cc` fast finishes the deployment of Unet on CPU/GPU and GPU accelerated by TensorRT. Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) 【Attention】For the deployment of **PP-Matting**、**PP-HumanMatting** and **ModNet**, refer to [Matting Model Deployment](../../../matting) Taking the inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.0 or above (x.x.x>=1.0.0) is required to support this model. ```bash mkdir build cd build # Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # Download Unet model files and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz tar -xvf Unet_cityscapes_without_argmax_infer.tgz wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png # CPU inference ./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 0 # GPU inference ./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 1 # TensorRT inference on GPU ./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2 # kunlunxin XPU inference ./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 3 ``` The visualized result after running is as follows
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to: - [How to use FastDeploy C++ SDK in Windows](../../../../../docs/cn/faq/use_sdk_on_windows.md) ## PaddleSeg C++ Interface ### PaddleSeg Class ```c++ fastdeploy::vision::segmentation::PaddleSegModel( const string& model_file, const string& params_file = "", const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE) ``` PaddleSegModel model loading and initialization, among which model_file is the exported Paddle model format. **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path > * **config_file**(str): Inference deployment configuration file > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. Paddle format by default #### Predict Function > ```c++ > PaddleSegModel::Predict(cv::Mat* im, DetectionResult* result) > ``` > > Model prediction interface. Input images and output detection results. > > **Parameter** > > > * **im**: Input images in HWC or BGR format > > * **result**: The segmentation result, including the predicted label of the segmentation and the corresponding probability of the label. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of SegmentationResult ### Class Member Variable #### Pre-processing Parameter Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results > > * **is_vertical_screen**(bool): For PP-HumanSeg models, the input image is portrait, height greater than a width, by setting this parameter to`true` #### Post-processing Parameter > > * **apply_softmax**(bool): The `apply_softmax` parameter is not specified when the model is exported. Set this parameter to `true` to normalize the probability result (score_map) of the predicted output segmentation label (label_map) - [Model Description](../../) - [Python Deployment](../python) - [Vision Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)