English | [简体中文](README_CN.md) # PP-Matting Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of PP-Matting on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download the deployment example code git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/examples/vision/matting/ppmatting/python # Download PP-Matting model files and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-Matting-512.tgz tar -xvf PP-Matting-512.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg # CPU inference python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device cpu # GPU inference python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device gpu # TensorRT inference on GPU(Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.) python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True # kunlunxin XPU inference python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device kunlunxin ``` The visualized result after running is as follows