English | [简体中文](README_CN.md) # PP-Matting Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of PP-Matting on CPU/GPU and GPU accelerated by TensorRT. The script is as follows ```bash # Download the deployment example code git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/examples/vision/matting/ppmatting/python # Download PP-Matting model files and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/PP-Matting-512.tgz tar -xvf PP-Matting-512.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg # CPU inference python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device cpu # GPU inference python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device gpu # TensorRT inference on GPU(Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.) python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True # kunlunxin XPU inference python infer.py --model PP-Matting-512 --image matting_input.jpg --bg matting_bgr.jpg --device kunlunxin ``` The visualized result after running is as follows
## PP-Matting Python Interface ```python fd.vision.matting.PPMatting(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE) ``` PP-Matting model loading and initialization, among which model_file, params_file, and config_file are the Paddle inference files exported from the training model. Refer to [Model Export](https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.6/Matting) for more information **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path > * **config_file**(str): Inference deployment configuration file > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. Paddle format by default ### predict function > ```python > PPMatting.predict(input_image) > ``` > > Model prediction interface. Input images and output detection results. > > **Parameter** > > > * **input_image**(np.ndarray): Input data in HWC or BGR format > **Return** > > > Return `fastdeploy.vision.MattingResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure. ### Class Member Variable #### Pre-processing Parameter Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results ## Other Documents - [PP-Matting Model Description](..) - [PP-Matting C++ Deployment](../cpp) - [Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)