English | [简体中文](README_CN.md) # PIPNet Python Deployment Example Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) This directory provides examples that `infer.py` fast finishes the deployment of PIPNet on CPU/GPU and GPU accelerated by TensorRT. FastDeploy version 0.7.0 or above is required to support this model. The script is as follows ```bash # Download the example code for deployment git clone https://github.com/PaddlePaddle/FastDeploy.git cd FastDeploy/examples/vision/facealign/pipnet/python # Download PIPNet model files, test images and videos ## Original ONNX Model wget https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x19x32x256_aflw.onnx wget https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png # CPU inference python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device cpu # GPU inference python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu # TRT inference python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu --backend trt ``` The visualized result after running is as follows