# FastDeploy Runtime User Guideline `Runtime`, the module for model inference in FastDeploy, currently integrates a variety of backends. It allows users to quickly complete inference in different model formats on different hardware, platforms and backends through a unified backend. This demo shows the inference on each hardware and backend. ## CPU Inference Python demo ```python import fastdeploy as fd import numpy as np option = fd.RuntimeOption() # Set model path option.set_model_path("resnet50/inference.pdmodel", "resnet50/inference.pdiparams") # Use OpenVINO backend option.use_openvino_backend() # Initialize runtime runtime = fd.Runtime(option) # Get input info input_name = runtime.get_input_info(0).name # Constructing data for inference results = runtime.infer({input_name: np.random.rand(1, 3, 224, 224).astype("float32")}) ``` ## GPU Inference ```python import fastdeploy as fd import numpy as np option = fd.RuntimeOption() # Set model path option.set_model_path("resnet50/inference.pdmodel", "resnet50/inference.pdiparams") # Use the GPU (0th GPU card) option.use_gpu(0) # Use Paddle Inference backend option.use_paddle_backend() # Initialize runtime runtime = fd.Runtime(option) # Get input info input_name = runtime.get_input_info(0).name # Constructing data for inference results = runtime.infer({input_name: np.random.rand(1, 3, 224, 224).astype("float32")}) ``` More Python/C++ inference demo, please refer to [FastDeploy/examples/runtime](../../../examples/runtime)