// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace utils { void DarkParse(const std::vector& heatmap, const std::vector& dim, std::vector* coords, const int px, const int py, const int index, const int ch) { /*DARK postpocessing, Zhang et al. Distribution-Aware Coordinate Representation for Human Pose Estimation (CVPR 2020). 1) offset = - hassian.inv() * derivative 2) dx = (heatmap[x+1] - heatmap[x-1])/2. 3) dxx = (dx[x+1] - dx[x-1])/2. 4) derivative = Mat([dx, dy]) 5) hassian = Mat([[dxx, dxy], [dxy, dyy]]) */ std::vector::const_iterator first1 = heatmap.begin() + index; std::vector::const_iterator last1 = heatmap.begin() + index + dim[2] * dim[3]; std::vector heatmap_ch(first1, last1); cv::Mat heatmap_mat = cv::Mat(heatmap_ch).reshape(0, dim[2]); heatmap_mat.convertTo(heatmap_mat, CV_32FC1); cv::GaussianBlur(heatmap_mat, heatmap_mat, cv::Size(3, 3), 0, 0); heatmap_mat = heatmap_mat.reshape(1, 1); heatmap_ch = std::vector(heatmap_mat.reshape(1, 1)); float epsilon = 1e-10; // sample heatmap to get values in around target location float xy = log(fmax(heatmap_ch[py * dim[3] + px], epsilon)); float xr = log(fmax(heatmap_ch[py * dim[3] + px + 1], epsilon)); float xl = log(fmax(heatmap_ch[py * dim[3] + px - 1], epsilon)); float xr2 = log(fmax(heatmap_ch[py * dim[3] + px + 2], epsilon)); float xl2 = log(fmax(heatmap_ch[py * dim[3] + px - 2], epsilon)); float yu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px], epsilon)); float yd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px], epsilon)); float yu2 = log(fmax(heatmap_ch[(py + 2) * dim[3] + px], epsilon)); float yd2 = log(fmax(heatmap_ch[(py - 2) * dim[3] + px], epsilon)); float xryu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px + 1], epsilon)); float xryd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px + 1], epsilon)); float xlyu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px - 1], epsilon)); float xlyd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px - 1], epsilon)); // compute dx/dy and dxx/dyy with sampled values float dx = 0.5 * (xr - xl); float dy = 0.5 * (yu - yd); float dxx = 0.25 * (xr2 - 2 * xy + xl2); float dxy = 0.25 * (xryu - xryd - xlyu + xlyd); float dyy = 0.25 * (yu2 - 2 * xy + yd2); // finally get offset by derivative and hassian, which combined by dx/dy and // dxx/dyy if (dxx * dyy - dxy * dxy != 0) { float M[2][2] = {dxx, dxy, dxy, dyy}; float D[2] = {dx, dy}; cv::Mat hassian(2, 2, CV_32F, M); cv::Mat derivative(2, 1, CV_32F, D); cv::Mat offset = -hassian.inv() * derivative; (*coords)[ch * 2] += offset.at(0, 0); (*coords)[ch * 2 + 1] += offset.at(1, 0); } } } // namespace utils } // namespace vision } // namespace fastdeploy