// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { namespace detection { class FASTDEPLOY_DECL YOLOv6 : public FastDeployModel { public: YOLOv6(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX); ~YOLOv6(); std::string ModelName() const { return "YOLOv6"; } virtual bool Predict(cv::Mat* im, DetectionResult* result, float conf_threshold = 0.25, float nms_iou_threshold = 0.5); void UseCudaPreprocessing(int max_img_size = 3840 * 2160); // tuple of (width, height) std::vector size; // padding value, size should be same with Channels std::vector padding_value; // only pad to the minimum rectange which height and width is times of stride bool is_mini_pad; // while is_mini_pad = false and is_no_pad = true, will resize the image to // the set size bool is_no_pad; // if is_scale_up is false, the input image only can be zoom out, the maximum // resize scale cannot exceed 1.0 bool is_scale_up; // padding stride, for is_mini_pad int stride; // for offseting the boxes by classes when using NMS, default 4096 in // meituan/YOLOv6 float max_wh; private: bool Initialize(); bool Preprocess(Mat* mat, FDTensor* outputs, std::map>* im_info); bool CudaPreprocess(Mat* mat, FDTensor* output, std::map>* im_info); bool Postprocess(FDTensor& infer_result, DetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold); bool IsDynamicInput() const { return is_dynamic_input_; } void LetterBox(Mat* mat, std::vector size, std::vector color, bool _auto, bool scale_fill = false, bool scale_up = true, int stride = 32); // whether to inference with dynamic shape (e.g ONNX export with dynamic shape // or not.) // meituan/YOLOv6 official 'export_onnx.py' script will export static ONNX by // default. // while is_dynamic_input if 'false', is_mini_pad will force 'false'. This // value will // auto check by fastdeploy after the internal Runtime already initialized. bool is_dynamic_input_; // CUDA host buffer for input image uint8_t* input_img_cuda_buffer_host_ = nullptr; // CUDA device buffer for input image uint8_t* input_img_cuda_buffer_device_ = nullptr; // CUDA device buffer for TRT input tensor float* input_tensor_cuda_buffer_device_ = nullptr; // Whether to use CUDA preprocessing bool use_cuda_preprocessing_ = false; }; } // namespace detection } // namespace vision } // namespace fastdeploy