# FastDeploy C++ API Summary ## Runtime FastDeploy Runtime can be used as an inference engine with the same code, we can deploy Paddle/ONNX model on different device by different backends. Currently, FastDeploy supported backends listed as below, | Backend | Hardware | Support Model Format | Platform | | :------ | :------- | :------------------- | :------- | | Paddle Inference | CPU/Nvidia GPU | Paddle | Windows(x64)/Linux(x64) | | ONNX Runtime | CPU/Nvidia GPU | Paddle/ONNX | Windows(x64)/Linux(x64/aarch64)/Mac(x86/arm64) | | TensorRT | Nvidia GPU | Paddle/ONNX | Windows(x64)/Linux(x64)/Jetson | | OpenVINO | CPU | Paddle/ONNX | Windows(x64)/Linux(x64)/Mac(x86) | | Poros | CPU/Nvidia GPU | TorchScript | Linux(x64) | ### Example code - [Python examples](./) - [C++ examples](./) ### Related APIs - [RuntimeOption](./structfastdeploy_1_1RuntimeOption.html) - [Runtime](./structfastdeploy_1_1Runtime.html) ## Vision Models | Task | Model | API | Example | | :---- | :---- | :---- | :----- | | object detection | PaddleDetection/PPYOLOE | [fastdeploy::vision::detection::PPYOLOE](./classfastdeploy_1_1vision_1_1detection_1_1PPYOLOE.html) | [C++](./)/[Python](./) | | keypoint detection | PaddleDetection/PPTinyPose | [fastdeploy::vision::keypointdetection::PPTinyPose](./classfastdeploy_1_1vision_1_1keypointdetection_1_1PPTinyPose.html) | [C++](./)/[Python](./) | | image classification | PaddleClassification serials | [fastdeploy::vision::classification::PaddleClasModel](./classfastdeploy_1_1vision_1_1classification_1_1PaddleClasModel.html) | [C++](./)/[Python](./) | | semantic segmentation | PaddleSegmentation serials | [fastdeploy::vision::classification::PaddleSegModel](./classfastdeploy_1_1vision_1_1segmentation_1_1PaddleSegModel.html) | [C++](./)/[Python](./) |