import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of PaddleSeg model.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--bg", type=str, required=True, default=None, help="Path of test background image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--use_trt", type=ast.literal_eval, default=False, help="Wether to use tensorrt.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() if args.device.lower() == "gpu": option.use_gpu() option.use_paddle_backend() if args.use_trt: option.use_trt_backend() option.set_trt_input_shape("img", [1, 3, 512, 512]) return option args = parse_arguments() # 配置runtime,加载模型 runtime_option = build_option(args) model_file = os.path.join(args.model, "model.pdmodel") params_file = os.path.join(args.model, "model.pdiparams") config_file = os.path.join(args.model, "deploy.yaml") model = fd.vision.matting.PPMatting( model_file, params_file, config_file, runtime_option=runtime_option) # 预测图片抠图结果 im = cv2.imread(args.image) bg = cv2.imread(args.bg) result = model.predict(im.copy()) print(result) # 可视化结果 vis_im = fd.vision.vis_matting_alpha(im, result) vis_im_with_bg = fd.vision.swap_background_matting(im, bg, result) cv2.imwrite("visualized_result_fg.jpg", vis_im) cv2.imwrite("visualized_result_replaced_bg.jpg", vis_im_with_bg) print( "Visualized result save in ./visualized_result_replaced_bg.jpg and ./visualized_result_fg.jpg" )