# FDTensor C++ Tensor quantization function FDTensor is FastDeploy's struct that represents the tensor at the C++ level. The struct is mainly used to manage the input and output data of the model during inference deployment and supports different Runtime backends. In the development of C++-based inference deployment applications, developers often need to process some data on the input and output to get the actual input or the actual output of the application. This pre-processing data logic can easily be done by the original C++ standard library. But it can be difficult to develop, e.g. to find the maximum value for the 2nd dimension of a 3-dimensional Tensor. To solve this problem, FastDeploy has developed a set of C++ tensor functions based on FDTensor to reduce costs and increase efficiency for FastDeploy developers. There are currently four main functions: Reduce, Manipulate, Math and Elementwise. ## Reduce Class Function Currently FastDeploy supports 7 types of Reduce class functions :Max, Min, Sum, All, Any, Mean, Prod. ### Max #### Function Signature ```c++ /** Excute the maximum operation for input FDTensor along given dims. @param x The input tensor. @param out The output tensor which stores the result. @param dims The vector of axis which will be reduced. @param keep_dim Whether to keep the reduced dims, default false. @param reduce_all Whether to reduce all dims, default false. */ void Max(const FDTensor& x, FDTensor* out, const std::vector& dims, bool keep_dim = false, bool reduce_all = false); ``` #### Demo ```c++ FDTensor input, output; std::vector inputs = {2, 4, 3, 7, 1, 5}; input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data()); // Calculate the max value for axis 0 of `inputs` // The output result would be [[7, 4, 5]]. Max(input, &output, {0}, /* keep_dim = */true); ``` ### Min #### Function Signature ```c++ /** Excute the minimum operation for input FDTensor along given dims. @param x The input tensor. @param out The output tensor which stores the result. @param dims The vector of axis which will be reduced. @param keep_dim Whether to keep the reduced dims, default false. @param reduce_all Whether to reduce all dims, default false. */ void Min(const FDTensor& x, FDTensor* out, const std::vector& dims, bool keep_dim = false, bool reduce_all = false); ``` #### Demo ```c++ FDTensor input, output; std::vector inputs = {2, 4, 3, 7, 1, 5}; input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data()); // Calculate the min value for axis 0 of `inputs` // The output result would be [[2, 1, 3]]. Min(input, &output, {0}, /* keep_dim = */true); ``` ### Sum #### Function Signature ```c++ /** Excute the sum operation for input FDTensor along given dims. @param x The input tensor. @param out The output tensor which stores the result. @param dims The vector of axis which will be reduced. @param keep_dim Whether to keep the reduced dims, default false. @param reduce_all Whether to reduce all dims, default false. */ void Sum(const FDTensor& x, FDTensor* out, const std::vector& dims, bool keep_dim = false, bool reduce_all = false); ``` #### Demo ```c++ FDTensor input, output; std::vector inputs = {2, 4, 3, 7, 1, 5}; input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data()); // Calculate the sum value for axis 0 of `inputs` // The output result would be [[9, 5, 8]]. Sum(input, &output, {0}, /* keep_dim = */true); ``` ### Mean #### Function Signature ```c++ /** Excute the mean operation for input FDTensor along given dims. @param x The input tensor. @param out The output tensor which stores the result. @param dims The vector of axis which will be reduced. @param keep_dim Whether to keep the reduced dims, default false. @param reduce_all Whether to reduce all dims, default false. */ void Mean(const FDTensor& x, FDTensor* out, const std::vector& dims, bool keep_dim = false, bool reduce_all = false); ``` #### Demo ```c++ FDTensor input, output; std::vector inputs = {2, 4, 3, 7, 1, 5}; input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data()); // Calculate the mean value for axis 0 of `inputs` // The output result would be [[4, 2, 4]]. Mean(input, &output, {0}, /* keep_dim = */true); ``` ### Prod #### Function Signature ```c++ /** Excute the product operation for input FDTensor along given dims. @param x The input tensor. @param out The output tensor which stores the result. @param dims The vector of axis which will be reduced. @param keep_dim Whether to keep the reduced dims, default false. @param reduce_all Whether to reduce all dims, default false. */ void Prod(const FDTensor& x, FDTensor* out, const std::vector& dims, bool keep_dim = false, bool reduce_all = false); ``` #### Demo ```c++ FDTensor input, output; std::vector inputs = {2, 4, 3, 7, 1, 5}; input.SetExternalData({2, 3}, FDDataType::INT32, inputs.data()); // Calculate the product value for axis 0 of `inputs` // The output result would be [[14, 4, 15]]. Prod(input, &output, {0}, /* keep_dim = */true); ``` ### Any #### Function Signature ```c++ /** Excute the any operation for input FDTensor along given dims. @param x The input tensor. @param out The output tensor which stores the result. @param dims The vector of axis which will be reduced. @param keep_dim Whether to keep the reduced dims, default false. @param reduce_all Whether to reduce all dims, default false. */ void Any(const FDTensor& x, FDTensor* out, const std::vector& dims, bool keep_dim = false, bool reduce_all = false); ``` #### Demo ```c++ FDTensor input, output; std::array bool_inputs = {false, false, true, true, false, true}; input.SetExternalData({2, 3}, FDDataType::INT32, bool_inputs.data()); // Calculate the any value for axis 0 of `inputs` // The output result would be [[true, false, true]]. Any(input, &output, {0}, /* keep_dim = */true); ``` ### All #### Function Signature ```c++ /** Excute the all operation for input FDTensor along given dims. @param x The input tensor. @param out The output tensor which stores the result. @param dims The vector of axis which will be reduced. @param keep_dim Whether to keep the reduced dims, default false. @param reduce_all Whether to reduce all dims, default false. */ void All(const FDTensor& x, FDTensor* out, const std::vector& dims, bool keep_dim = false, bool reduce_all = false); ``` #### Demo ```c++ FDTensor input, output; std::array bool_inputs = {false, false, true, true, false, true}; input.SetExternalData({2, 3}, FDDataType::INT32, bool_inputs.data()); // Calculate the all value for axis 0 of `inputs` // The output result would be [[false, false, true]]. All(input, &output, {0}, /* keep_dim = */true); ``` ## Manipulate Class Function Currently FastDeploy supports 1 Manipulate class function: Transpose. ### Transpose #### Function Signature ```c++ /** Excute the transpose operation for input FDTensor along given dims. @param x The input tensor. @param out The output tensor which stores the result. @param dims The vector of axis which the input tensor will transpose. */ void Transpose(const FDTensor& x, FDTensor* out, const std::vector& dims); ``` #### Demo ```c++ FDTensor input, output; std::vector inputs = {2, 4, 3, 7, 1, 5}; input.SetExternalData({2, 3}, FDDataType::FP32, inputs.data()); // Transpose the input tensor with axis {1, 0}. // The output result would be [[2, 7], [4, 1], [3, 5]] Transpose(input, &output, {1, 0}); ``` ## Math Class Function Currently FastDeploy supports 1 Math class function: Softmax. ### Softmax #### Function Signature ```c++ /** Excute the softmax operation for input FDTensor along given dims. @param x The input tensor. @param out The output tensor which stores the result. @param axis The axis to be computed softmax value. */ void Softmax(const FDTensor& x, FDTensor* out, int axis = -1); ``` #### Demo ```c++ FDTensor input, output; CheckShape check_shape; CheckData check_data; std::vector inputs = {1, 2, 3, 4, 5, 6}; input.SetExternalData({2, 3}, FDDataType::FP32, inputs.data()); // Transpose the input tensor with axis {1, 0}. // The output result would be // [[0.04742587, 0.04742587, 0.04742587], // [0.95257413, 0.95257413, 0.95257413]] Softmax(input, &output, 0); ``` ## Elementwise Class Function To be continued...