# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Type from paddle import nn def is_text_generation_model(model_cls: Type[nn.Layer]) -> bool: from .model_base import ModelForCasualLM return issubclass(model_cls, ModelForCasualLM) def is_pooling_model(model_cls: Type[nn.Layer]) -> bool: class_name = model_cls.__name__ pooling_indicators = ["Embedding", "ForSequenceClassification"] return ( any(indicator in class_name for indicator in pooling_indicators) or hasattr(model_cls, "is_embedding_model") and model_cls.is_embedding_model ) def is_multimodal_model(class_name: str) -> bool: multimodal_indicators = ["VL", "Vision", "ConditionalGeneration"] return any(indicator in class_name for indicator in multimodal_indicators) def determine_model_category(class_name: str): from fastdeploy.model_executor.models.model_base import ModelCategory if any(pattern in class_name for pattern in ["VL", "Vision", "ConditionalGeneration"]): return ModelCategory.MULTIMODAL elif any(pattern in class_name for pattern in ["Embedding", "ForSequenceClassification"]): return ModelCategory.EMBEDDING return ModelCategory.TEXT_GENERATION def get_default_pooling_type(model_cls: Type[nn.Layer] = None) -> str: if model_cls is not None: return getattr(model_cls, "default_pooling_type", "LAST") return "LAST"