# Reasoning Outputs Reasoning models return an additional `reasoning_content` field in their output, which contains the reasoning steps that led to the final conclusion. ## Supported Models | Model Name | Parser Name | Eable_thinking by Default | |----------------|----------------|---------------------------| | baidu/ERNIE-4.5-VL-424B-A47B-Paddle | ernie-45-vl | ✓ | | baidu/ERNIE-4.5-VL-28B-A3B-Paddle | ernie-45-vl | ✓ | The reasoning model requires a specified parser to extract reasoning content. The reasoning mode can be disabled by setting the `"enable_thinking": false` parameter. Interfaces that support toggling the reasoning mode: 1. `/v1/chat/completions` requests in OpenAI services. 2. `/v1/chat/completions` requests in the OpenAI Python client. 3. `llm.chat` requests in Offline interfaces. For reasoning models, the length of the reasoning content can be controlled via `reasoning_max_tokens`. Add `"reasoning_max_tokens": 1024` to the request. ### Quick Start When launching the model service, specify the parser name using the `--reasoning-parser` argument. This parser will process the model's output and extract the `reasoning_content` field. ```bash python -m fastdeploy.entrypoints.openai.api_server \ --model /path/to/your/model \ --enable-mm \ --tensor-parallel-size 8 \ --port 8192 \ --quantization wint4 \ --reasoning-parser ernie-45-vl ``` Next, make a request to the model that should return the reasoning content in the response. ```bash curl -X POST "http://0.0.0.0:8192/v1/chat/completions" \ -H "Content-Type: application/json" \ -d '{ "messages": [ {"role": "user", "content": [ {"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}}, {"type": "text", "text": "Which era does the cultural relic in the picture belong to"} ]} ], "chat_template_kwargs":{"enable_thinking": true}, "reasoning_max_tokens": 1024 }' ``` The `reasoning_content` field contains the reasoning steps to reach the final conclusion, while the `content` field holds the conclusion itself. ### Streaming chat completions Streaming chat completions are also supported for reasoning models. The `reasoning_content` field is available in the `delta` field in `chat completion response chunks` ```python from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8192/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) chat_response = client.chat.completions.create( messages=[ {"role": "user", "content": [ {"type": "image_url", "image_url": {"url": "https://paddlenlp.bj.bcebos.com/datasets/paddlemix/demo_images/example2.jpg"}}, {"type": "text", "text": "Which era does the cultural relic in the picture belong to"}]} ], model="vl", stream=True, extra_body={ "chat_template_kwargs":{"enable_thinking": True}, "reasoning_max_tokens": 1024 } ) for chunk in chat_response: if chunk.choices[0].delta is not None: print(chunk.choices[0].delta, end='') print("\n") ```