""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import gc from typing import List, Optional import paddle from paddle import nn from fastdeploy import envs from fastdeploy.config import FDConfig from fastdeploy.engine.request import Request from fastdeploy.utils import get_logger from fastdeploy.worker.output import ModelRunnerOutput from fastdeploy.worker.worker_base import WorkerBase from fastdeploy.worker.xpu_model_runner import XPUModelRunner logger = get_logger("xpu_worker", "xpu_worker.log") class XpuWorker(WorkerBase): """ """ def __init__( self, fd_config: FDConfig, local_rank: int, rank: int, ): super().__init__( fd_config=fd_config, local_rank=local_rank, rank=rank, ) pass def init_device(self): """Initialize device and Construct model runner""" if paddle.is_compiled_with_xpu(): # Set evironment variable self.device = f"xpu:{self.local_rank}" paddle.device.set_device(self.device) paddle.set_default_dtype(self.parallel_config.dtype) self.device_ids = self.parallel_config.device_ids.split(",") gc.collect() else: raise RuntimeError(f"Not support device type: {self.device_config.device}") # Construct model runner self.model_runner: XPUModelRunner = XPUModelRunner( fd_config=self.fd_config, device=self.device, rank=self.rank, local_rank=self.local_rank, ) def graph_optimize_and_warm_up_model(self) -> None: """ Perform the warm-up and the graph optimization """ if self.model_runner.graph_opt_level >= 1: self.model_runner.sot_warmup() def determine_available_memory(self) -> int: """ Profiles the peak memory usage of the model to determine how much memory can be used for KV cache without OOMs. The engine will first conduct a profiling of the existing memory usage. Then, it calculate the maximum possible number of GPU and CPU blocks that can be allocated with the remaining free memory. Tip: You may limit the usage of GPU memory by adjusting the `gpu_memory_utilization` parameter. """ from fastdeploy.model_executor.ops.xpu import ( xpu_get_free_global_memory, xpu_get_total_global_memory, xpu_get_used_global_memory, ) assert self.device_ids[self.local_rank] is not None, f"device_id is none for rank {self.local_rank}" assert ( len(self.device_ids) > self.local_rank ), f"device number must be greater than local rank, but get device number is {len(self.device_ids)}, rank is {self.local_rank}" total_memory = xpu_get_total_global_memory(int(self.device_ids[self.local_rank])) used_memory = xpu_get_used_global_memory(int(self.device_ids[self.local_rank])) free_memory = xpu_get_free_global_memory(int(self.device_ids[self.local_rank])) logger.info( f"Before warm up, total_memory: {total_memory}, \ used_memory: {used_memory}, free_memory: {free_memory}" ) self.model_runner.prepare_profile() self.model_runner.profile_run() total_available_memory = int(total_memory * self.cache_config.gpu_memory_utilization) used_memory = xpu_get_used_global_memory(int(self.device_ids[self.local_rank])) available_kv_cache_memory = total_available_memory - used_memory model_block_memory_used = self.cal_theortical_kvcache() available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num self.model_runner.clear_block_table() logger.info( f"After warm up, total_available_memory: {total_available_memory}, \ used_memory: {used_memory}, available_kv_cache_memory: {available_kv_cache_memory}" ) paddle.device.xpu.empty_cache() return available_kv_cache_memory # approximate value def cal_theortical_kvcache(self) -> int: """ """ return self.model_runner.cal_theortical_kvcache() def load_model(self) -> None: """ """ self.model_runner.load_model() def get_model(self) -> nn.Layer: """ """ return self.model_runner.get_model() def initialize_cache(self, num_gpu_blocks: int) -> None: """ """ self.model_runner.update_share_input_block_num(num_gpu_blocks=num_gpu_blocks) def execute_model( self, model_forward_batch: Optional[List[Request]] = None, is_dummy_run: bool = False, num_running_requests: Optional[int] = None, ) -> Optional[ModelRunnerOutput]: """ """ if is_dummy_run: output = self.model_runner.execute_model(model_forward_batch) else: output = self.model_runner.execute_model(model_forward_batch, num_running_requests) return output def exist_prefill(self): """ check whether prefill stage exist """ return self.model_runner.exist_prefill() def preprocess_new_task(self, req_dicts: List[Request], num_running_requests: int) -> None: """Process new requests and then start the decode loop TODO(gongshaotian):The scheduler should schedule the handling of prefill, and workers and modelrunners should not perceive it. """ if envs.ENABLE_V1_KVCACHE_SCHEDULER: self.model_runner.insert_tasks_v1(req_dicts=req_dicts, num_running_requests=num_running_requests) else: self.model_runner.process_prefill_inputs(req_dicts=req_dicts, num_running_requests=num_running_requests) def check_health(self) -> bool: """ """ return True