// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "fastdeploy/backends/common/multiclass_nms.h" #include "fastdeploy/core/fd_tensor.h" namespace fastdeploy { struct TensorInfo { std::string name; std::vector shape; FDDataType dtype; friend std::ostream& operator<<(std::ostream& output, const TensorInfo& info) { output << "TensorInfo(name: " << info.name << ", shape: ["; for (size_t i = 0; i < info.shape.size(); ++i) { if (i == info.shape.size() - 1) { output << info.shape[i]; } else { output << info.shape[i] << ", "; } } output << "], dtype: " << Str(info.dtype) << ")"; return output; } }; class BaseBackend { public: bool initialized_ = false; BaseBackend() {} virtual ~BaseBackend() = default; virtual bool Initialized() const { return initialized_; } virtual int NumInputs() const = 0; virtual int NumOutputs() const = 0; virtual TensorInfo GetInputInfo(int index) = 0; virtual TensorInfo GetOutputInfo(int index) = 0; virtual std::vector GetInputInfos() = 0; virtual std::vector GetOutputInfos() = 0; virtual bool Infer(std::vector& inputs, std::vector* outputs) = 0; }; } // namespace fastdeploy