""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations import os from dataclasses import dataclass, field from typing import TYPE_CHECKING, List, Optional import paddle from fastdeploy.model_executor.layers.attention.ops import ( append_attention, append_attention_with_output, get_block_shape_and_split_kv_block, init_kv_signal_per_query, init_signal_layerwise, open_shm_and_get_meta_signal, ) if TYPE_CHECKING: from fastdeploy.model_executor.forward_meta import ForwardMeta from fastdeploy.config import FDConfig from fastdeploy.model_executor.layers.attention.attention import Attention from fastdeploy.model_executor.layers.attention.base_attention_backend import ( AttentionBackend, AttentionMetadata, ) from fastdeploy.model_executor.layers.attention.utils import init_rank_and_device_id @dataclass class AppendAttentionMetadata(AttentionMetadata): """ AppendAttentionMetadata """ encoder_batch_ids: paddle.Tensor = None encoder_tile_ids_per_batch: paddle.Tensor = None encoder_num_blocks: paddle.Tensor = None kv_batch_ids: paddle.Tensor = None kv_tile_ids_per_batch: paddle.Tensor = None kv_num_blocks: paddle.Tensor = None max_len_kv: paddle.Tensor = None _dtype: paddle.dtype = paddle.bfloat16 encoder_max_partition_size: int = 32768 max_partition_size: int = 32768 block_tables: Optional[paddle.Tensor] = None rotary_embs: Optional[paddle.Tensor] = None attn_mask: Optional[paddle.Tensor] = None _fuse_kernel_compute_dtype: str = "bf16" # pd_disaggregation kv_signal_metadata: Optional[paddle.Tensor] = None kv_signal_data_list: List[Optional[paddle.Tensor]] = field(default_factory=list) class AppendAttentionBackend(AttentionBackend): """ AppendAttentionBackend backend implementation. """ __infer_dynamic_dims_fields__ = ["attention_metadata"] attention_metadata: AppendAttentionMetadata def __init__( self, fd_config: FDConfig, kv_num_heads: int, num_heads: int, head_dim: int, encoder_block_shape_q: int = -1, decoder_block_shape_q: int = -1, ) -> None: """ AppendAttentionBackend __init__ """ super().__init__() self.attention_metadata: AppendAttentionMetadata = None self.block_size: int = fd_config.cache_config.block_size self.max_seq_len: int = fd_config.parallel_config.max_model_len self.rope_theta: float = ( 10000.0 if fd_config.model_config.rope_theta is None else fd_config.model_config.rope_theta ) self.rope_3d: bool = getattr(fd_config.model_config, "rope_3d", False) or getattr( fd_config.model_config, "use_3d_rope", False ) self.causal: bool = getattr(fd_config.model_config, "causal", True) self.speculative_method: str = fd_config.speculative_config.method self.use_speculate: bool = self.speculative_method is not None self.speculate_max_draft_token_num: int = fd_config.speculative_config.num_speculative_tokens self.keep_pd_step_flag: bool = fd_config.speculative_config.model_type == "mtp" self.num_layers_draft_model: int = int(fd_config.speculative_config.method in ["mtp"]) self.kv_num_heads: int = kv_num_heads self.num_heads: int = num_heads self.group_size: int = self.num_heads // self.kv_num_heads self.head_dim: int = fd_config.model_config.head_dim self.num_layers: int = fd_config.model_config.num_hidden_layers self.max_partition_size: int = int(os.getenv("FLAGS_max_partition_size", 1024)) self.encoder_block_shape_q: int = encoder_block_shape_q self.decoder_block_shape_q: int = decoder_block_shape_q self.pd_disaggregation_mode: str = fd_config.parallel_config.pd_disaggregation_mode self.start_layer_index: int = fd_config.model_config.start_layer_index if fd_config.parallel_config.expert_parallel_rank is None: fd_config.parallel_config.expert_parallel_rank = 0 self.rank, self.device_id = init_rank_and_device_id(fd_config) self.use_output = not fd_config.graph_opt_config.full_cuda_graph def init_attention_metadata(self, forward_meta: ForwardMeta): """Initialize attntion metadata hence all layers in the forward pass can reuse it.""" metadata = AppendAttentionMetadata() metadata.max_partition_size = self.max_partition_size metadata.encoder_max_partition_size = self.max_seq_len metadata._dtype = paddle.get_default_dtype() if metadata._dtype == "bfloat16": metadata._fuse_kernel_compute_dtype = "bf16" elif metadata._dtype == "float16": metadata._fuse_kernel_compute_dtype = "fp16" elif metadata._dtype == "float32": metadata._fuse_kernel_compute_dtype = "fp32" metadata.block_tables = forward_meta.block_tables metadata.rotary_embs = forward_meta.rotary_embs metadata.attn_mask = forward_meta.attn_mask metadata.pre_caches_length = forward_meta.pre_caches_length ( metadata.encoder_batch_ids, metadata.encoder_tile_ids_per_batch, metadata.encoder_num_blocks, metadata.kv_batch_ids, metadata.kv_tile_ids_per_batch, metadata.kv_num_blocks, metadata.max_len_kv, ) = get_block_shape_and_split_kv_block( forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.seq_lens_this_time, forward_meta.decoder_batch_ids, forward_meta.decoder_tile_ids_per_batch, forward_meta.decoder_num_blocks_cpu, forward_meta.max_len_tensor_cpu, self.encoder_block_shape_q, self.decoder_block_shape_q, self.group_size, self.block_size, self.speculate_max_draft_token_num + 1, ) # pd_disaggregation metadata.kv_signal_data_list = [None] * self.num_layers if self.pd_disaggregation_mode == "per_chunk": if not self.keep_pd_step_flag: init_kv_signal_per_query( forward_meta.seq_lens_encoder, forward_meta.seq_lens_this_time, forward_meta.seq_lens_decoder, self.rank, self.num_layers + self.num_layers_draft_model, ) elif self.pd_disaggregation_mode == "per_query": metadata.kv_signal_metadata = open_shm_and_get_meta_signal( self.rank, int(self.device_id), self.keep_pd_step_flag ) self.attention_metadata: AttentionMetadata = metadata def get_attntion_meta(self) -> AttentionMetadata: """get_attntion_meta""" return self.attention_metadata def get_kv_cache_shape( self, max_num_blocks: int, kv_cache_quant_type: str = None, ): """ Calculate kv cache shape """ if kv_cache_quant_type is not None and kv_cache_quant_type == "int4_zp": return ( max_num_blocks, self.kv_num_heads, self.block_size, self.head_dim // 2, ) else: return ( max_num_blocks, self.kv_num_heads, self.block_size, self.head_dim, ) def forward_mixed( self, q: paddle.Tensor, k: paddle.Tensor, v: paddle.Tensor, qkv: paddle.Tensor, compressed_kv: paddle.Tensor, k_pe: paddle.Tensor, layer: Attention, forward_meta: ForwardMeta, ) -> paddle.Tensor: """ forward_mixed """ metadata = self.attention_metadata if self.pd_disaggregation_mode == "per_query": metadata.kv_signal_data_list[layer.layer_id] = init_signal_layerwise( metadata.kv_signal_metadata, layer.layer_id + self.start_layer_index, ) if self.use_output: quant_max_bound = getattr(layer, "quant_max_bound", 0.0) cache_quant_type = getattr(layer, "cache_quant_type_str", "none") compute_type = metadata._fuse_kernel_compute_dtype out_scale = getattr(layer, "out_scale", -1.0) # 1. get output datatype qkv_dtype = qkv.dtype if qkv_dtype == paddle.float16: D_type = paddle.float16 elif qkv_dtype == paddle.bfloat16: D_type = paddle.bfloat16 elif qkv_dtype == paddle.int32: if compute_type == "bf16": D_type = paddle.bfloat16 elif compute_type == "fp16": D_type = paddle.float16 else: raise NotImplementedError("Only supported attr of qkv_type in ['float16', 'bfloat16'].") else: raise NotImplementedError("Only supported attr of qkv_type in ['float16', 'bfloat16', 'int32'].") # 2.Extract related parameters token_nums = qkv.shape[0] head_dims = self.head_dim if cache_quant_type != "cache_int4_zp" else self.head_dim * 2 q_num_heads = self.num_heads # 3. generate output tensor of different dtypes if out_scale > 0.0: if abs(quant_max_bound - 127) < 0.000001: res = paddle.empty([token_nums, q_num_heads * head_dims], dtype="int8").to(qkv.place) elif abs(quant_max_bound - 448) < 0.000001: res = paddle.empty([token_nums, q_num_heads * head_dims], dtype="float8_e4m3fn").to(qkv.place) else: raise NotImplementedError("Only supported attr of quant_max_bound in ['127', '448'].") else: res = paddle.empty([token_nums, q_num_heads * head_dims], dtype=D_type).to(qkv.place) append_attention_with_output( qkv, forward_meta.caches[2 * layer.layer_id], forward_meta.caches[2 * layer.layer_id + 1], forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.seq_lens_this_time, forward_meta.batch_id_per_token, forward_meta.cu_seqlens_q, metadata.block_tables, metadata.encoder_batch_ids, metadata.encoder_tile_ids_per_batch, metadata.encoder_num_blocks, metadata.kv_batch_ids, metadata.kv_tile_ids_per_batch, metadata.kv_num_blocks, forward_meta.decoder_batch_ids, forward_meta.decoder_tile_ids_per_batch, forward_meta.decoder_num_blocks_cpu, forward_meta.max_len_tensor_cpu, metadata.max_len_kv, res, metadata.rotary_embs, metadata.attn_mask, layer.qkv_bias, layer.qkv_scale, getattr(layer, "cache_k_scale", None), getattr(layer, "cache_v_scale", None), getattr(layer, "cache_k_out_scale", None), getattr(layer, "cache_v_out_scale", None), getattr(layer, "cache_k_zp", None), getattr(layer, "cache_v_zp", None), layer.linear_shift, layer.linear_smooth, forward_meta.attn_mask_offsets, metadata.kv_signal_data_list[layer.layer_id], getattr(layer, "q_norm_weight", None), getattr(layer, "k_norm_weight", None), getattr(layer, "rms_norm_eps", 1e-6), metadata._fuse_kernel_compute_dtype, getattr(layer, "cache_quant_type_str", "none"), layer.use_neox_rotary_style, self.rope_3d, self.max_seq_len, getattr(layer, "quant_max_bound", 0.0), getattr(layer, "quant_min_bound", 0.0), getattr(layer, "out_scale", -1.0), self.encoder_block_shape_q, self.decoder_block_shape_q, metadata.max_partition_size, metadata.encoder_max_partition_size, self.speculate_max_draft_token_num + 1, self.causal, self.speculative_method is not None, ) else: res = append_attention( qkv, forward_meta.caches[2 * layer.layer_id], forward_meta.caches[2 * layer.layer_id + 1], forward_meta.seq_lens_encoder, forward_meta.seq_lens_decoder, forward_meta.seq_lens_this_time, forward_meta.batch_id_per_token, forward_meta.cu_seqlens_q, metadata.block_tables, metadata.encoder_batch_ids, metadata.encoder_tile_ids_per_batch, metadata.encoder_num_blocks, metadata.kv_batch_ids, metadata.kv_tile_ids_per_batch, metadata.kv_num_blocks, forward_meta.decoder_batch_ids, forward_meta.decoder_tile_ids_per_batch, forward_meta.decoder_num_blocks_cpu, forward_meta.max_len_tensor_cpu, metadata.max_len_kv, metadata.rotary_embs, metadata.attn_mask, layer.qkv_bias, layer.qkv_scale, getattr(layer, "cache_k_scale", None), getattr(layer, "cache_v_scale", None), getattr(layer, "cache_k_out_scale", None), getattr(layer, "cache_v_out_scale", None), getattr(layer, "cache_k_zp", None), getattr(layer, "cache_v_zp", None), layer.linear_shift, layer.linear_smooth, forward_meta.attn_mask_offsets, metadata.kv_signal_data_list[layer.layer_id], getattr(layer, "q_norm_weight", None), getattr(layer, "k_norm_weight", None), getattr(layer, "rms_norm_eps", 1e-6), metadata._fuse_kernel_compute_dtype, getattr(layer, "cache_quant_type_str", "none"), layer.use_neox_rotary_style, self.rope_3d, self.max_seq_len, getattr(layer, "quant_max_bound", 0.0), getattr(layer, "quant_min_bound", 0.0), getattr(layer, "out_scale", -1.0), self.encoder_block_shape_q, self.decoder_block_shape_q, metadata.max_partition_size, metadata.encoder_max_partition_size, self.speculate_max_draft_token_num + 1, self.causal, self.speculative_method is not None, ) return res