# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from fastdeploy.model_executor.ops.xpu import get_token_penalty paddle.seed(2023) bs = 1 length = 12 length_id = 6 pre_ids = paddle.ones([bs, length_id], dtype="int64") logits = paddle.randn([bs, length], dtype="float16") penalty_scores = paddle.randn([bs], dtype="float16") # pre_ids = np.array([[0, 1, 2, 3, 4, 5]]).astype('int64') # logits = np.random.uniform(1, 10, size=(bs, length)).astype('float32') # penalty_scores = np.random.uniform(1, 2, size=(bs)).astype('float32') out = get_token_penalty(pre_ids, logits, penalty_scores) print(pre_ids) print(logits) print(penalty_scores) print(out) pre_ids = paddle.ones([bs, length_id], dtype="int64") logits = paddle.randn([bs, length], dtype="float32") penalty_scores = paddle.randn([bs], dtype="float32") # pre_ids = np.array([[0, 1, 2, 3, 4, 5]]).astype('int64') # logits = np.random.uniform(1, 10, size=(bs, length)).astype('float32') # penalty_scores = np.random.uniform(1, 2, size=(bs)).astype('float32') out = get_token_penalty(pre_ids, logits, penalty_scores) print(pre_ids) print(logits) print(penalty_scores) print(out)