// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision.h" void CpuInfer(const std::string &model_file, const std::string ¶ms_file, const std::vector &image_file) { auto option = fastdeploy::RuntimeOption(); auto model = fastdeploy::vision::faceid::AdaFace(model_file, params_file); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } cv::Mat face0 = cv::imread(image_file[0]); cv::Mat face1 = cv::imread(image_file[1]); cv::Mat face2 = cv::imread(image_file[2]); fastdeploy::vision::FaceRecognitionResult res0; fastdeploy::vision::FaceRecognitionResult res1; fastdeploy::vision::FaceRecognitionResult res2; if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) || (!model.Predict(face2, &res2))) { std::cerr << "Prediction Failed." << std::endl; } std::cout << "Prediction Done!" << std::endl; std::cout << "--- [Face 0]:" << res0.Str(); std::cout << "--- [Face 1]:" << res1.Str(); std::cout << "--- [Face 2]:" << res2.Str(); float cosine01 = fastdeploy::vision::utils::CosineSimilarity( res0.embedding, res1.embedding, model.GetPostprocessor().GetL2Normalize()); float cosine02 = fastdeploy::vision::utils::CosineSimilarity( res0.embedding, res2.embedding, model.GetPostprocessor().GetL2Normalize()); std::cout << "Detect Done! Cosine 01: " << cosine01 << ", Cosine 02:" << cosine02 << std::endl; } void KunlunXinInfer(const std::string &model_file, const std::string ¶ms_file, const std::vector &image_file) { auto option = fastdeploy::RuntimeOption(); option.UseKunlunXin(); auto model = fastdeploy::vision::faceid::AdaFace(model_file, params_file); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } cv::Mat face0 = cv::imread(image_file[0]); cv::Mat face1 = cv::imread(image_file[1]); cv::Mat face2 = cv::imread(image_file[2]); fastdeploy::vision::FaceRecognitionResult res0; fastdeploy::vision::FaceRecognitionResult res1; fastdeploy::vision::FaceRecognitionResult res2; if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) || (!model.Predict(face2, &res2))) { std::cerr << "Prediction Failed." << std::endl; } std::cout << "Prediction Done!" << std::endl; std::cout << "--- [Face 0]:" << res0.Str(); std::cout << "--- [Face 1]:" << res1.Str(); std::cout << "--- [Face 2]:" << res2.Str(); float cosine01 = fastdeploy::vision::utils::CosineSimilarity( res0.embedding, res1.embedding, model.GetPostprocessor().GetL2Normalize()); float cosine02 = fastdeploy::vision::utils::CosineSimilarity( res0.embedding, res2.embedding, model.GetPostprocessor().GetL2Normalize()); std::cout << "Detect Done! Cosine 01: " << cosine01 << ", Cosine 02:" << cosine02 << std::endl; } void GpuInfer(const std::string &model_file, const std::string ¶ms_file, const std::vector &image_file) { auto option = fastdeploy::RuntimeOption(); option.UseGpu(); auto model = fastdeploy::vision::faceid::AdaFace(model_file, params_file, option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } cv::Mat face0 = cv::imread(image_file[0]); cv::Mat face1 = cv::imread(image_file[1]); cv::Mat face2 = cv::imread(image_file[2]); fastdeploy::vision::FaceRecognitionResult res0; fastdeploy::vision::FaceRecognitionResult res1; fastdeploy::vision::FaceRecognitionResult res2; if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) || (!model.Predict(face2, &res2))) { std::cerr << "Prediction Failed." << std::endl; } std::cout << "Prediction Done!" << std::endl; std::cout << "--- [Face 0]:" << res0.Str(); std::cout << "--- [Face 1]:" << res1.Str(); std::cout << "--- [Face 2]:" << res2.Str(); float cosine01 = fastdeploy::vision::utils::CosineSimilarity( res0.embedding, res1.embedding, model.GetPostprocessor().GetL2Normalize()); float cosine02 = fastdeploy::vision::utils::CosineSimilarity( res0.embedding, res2.embedding, model.GetPostprocessor().GetL2Normalize()); std::cout << "Detect Done! Cosine 01: " << cosine01 << ", Cosine 02:" << cosine02 << std::endl; } void TrtInfer(const std::string &model_file, const std::string ¶ms_file, const std::vector &image_file) { auto option = fastdeploy::RuntimeOption(); option.UseGpu(); option.UseTrtBackend(); option.SetTrtInputShape("data", {1, 3, 112, 112}); auto model = fastdeploy::vision::faceid::AdaFace(model_file, params_file, option); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } cv::Mat face0 = cv::imread(image_file[0]); cv::Mat face1 = cv::imread(image_file[1]); cv::Mat face2 = cv::imread(image_file[2]); fastdeploy::vision::FaceRecognitionResult res0; fastdeploy::vision::FaceRecognitionResult res1; fastdeploy::vision::FaceRecognitionResult res2; if ((!model.Predict(face0, &res0)) || (!model.Predict(face1, &res1)) || (!model.Predict(face2, &res2))) { std::cerr << "Prediction Failed." << std::endl; } std::cout << "Prediction Done!" << std::endl; std::cout << "--- [Face 0]:" << res0.Str(); std::cout << "--- [Face 1]:" << res1.Str(); std::cout << "--- [Face 2]:" << res2.Str(); float cosine01 = fastdeploy::vision::utils::CosineSimilarity( res0.embedding, res1.embedding, model.GetPostprocessor().GetL2Normalize()); float cosine02 = fastdeploy::vision::utils::CosineSimilarity( res0.embedding, res2.embedding, model.GetPostprocessor().GetL2Normalize()); std::cout << "Detect Done! Cosine 01: " << cosine01 << ", Cosine 02:" << cosine02 << std::endl; } int main(int argc, char *argv[]) { if (argc < 7) { std::cout << "Usage: infer_demo path/to/model path/to/image run_option, " "e.g ./infer_demo mobilefacenet_adaface.pdmodel " "mobilefacenet_adaface.pdiparams " "test_lite_focal_AdaFace_0.JPG test_lite_focal_AdaFace_1.JPG " "test_lite_focal_AdaFace_2.JPG 0" << std::endl; std::cout << "The data type of run_option is int, 0: run with cpu; 1: run " "with gpu; 2: run with gpu and use tensorrt backend; 3: run with kunlunxin." << std::endl; return -1; } std::vector image_files = {argv[3], argv[4], argv[5]}; if (std::atoi(argv[6]) == 0) { std::cout << "use CpuInfer" << std::endl; CpuInfer(argv[1], argv[2], image_files); } else if (std::atoi(argv[6]) == 1) { GpuInfer(argv[1], argv[2], image_files); } else if (std::atoi(argv[6]) == 2) { TrtInfer(argv[1], argv[2], image_files); } else if (std::atoi(argv[6]) == 3) { KunlunXinInfer(argv[1], argv[2], image_files); } return 0; }