// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { namespace detection { class FASTDEPLOY_DECL YOLOv5 : public FastDeployModel { public: // 当model_format为ONNX时,无需指定params_file // 当model_format为Paddle时,则需同时指定model_file & params_file YOLOv5(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const Frontend& model_format = Frontend::ONNX); // 定义模型的名称 std::string ModelName() const { return "yolov5"; } // 模型预测接口,即用户调用的接口 // im 为用户的输入数据,目前对于CV均定义为cv::Mat // result 为模型预测的输出结构体 // conf_threshold 为后处理的参数 // nms_iou_threshold 为后处理的参数 virtual bool Predict(cv::Mat* im, DetectionResult* result, float conf_threshold = 0.25, float nms_iou_threshold = 0.5); // 输入图像预处理操作 // Mat为FastDeploy定义的数据结构 // FDTensor为预处理后的Tensor数据,传给后端进行推理 // im_info为预处理过程保存的数据,在后处理中需要用到 static bool Preprocess(Mat* mat, FDTensor* output, std::map>* im_info, const std::vector& size = {640, 640}, const std::vector padding_value = {114.0, 114.0, 114.0}, bool is_mini_pad = false, bool is_no_pad = false, bool is_scale_up = false, int stride = 32, float max_wh = 7680.0, bool multi_label = true); // 后端推理结果后处理,输出给用户 // infer_result 为后端推理后的输出Tensor // result 为模型预测的结果 // im_info 为预处理记录的信息,后处理用于还原box // conf_threshold 后处理时过滤box的置信度阈值 // nms_iou_threshold 后处理时NMS设定的iou阈值 // multi_label 后处理时box选取是否采用多标签方式 static bool Postprocess( std::vector& infer_results, DetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold, bool multi_label, float max_wh = 7680.0); // 以下为模型在预测时的一些参数,基本是前后处理所需 // 用户在创建模型后,可根据模型的要求,以及自己的需求 // 对参数进行修改 // tuple of (width, height) std::vector size_; // padding value, size should be same with Channels std::vector padding_value_; // only pad to the minimum rectange which height and width is times of stride bool is_mini_pad_; // while is_mini_pad = false and is_no_pad = true, will resize the image to // the set size bool is_no_pad_; // if is_scale_up is false, the input image only can be zoom out, the maximum // resize scale cannot exceed 1.0 bool is_scale_up_; // padding stride, for is_mini_pad int stride_; // for offseting the boxes by classes when using NMS float max_wh_; // for different strategies to get boxes when postprocessing bool multi_label_; private: // 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作 bool Initialize(); // 查看输入是否为动态维度的 不建议直接使用 不同模型的逻辑可能不一致 bool IsDynamicInput() const { return is_dynamic_input_; } static void LetterBox(Mat* mat, std::vector size, std::vector color, bool _auto, bool scale_fill = false, bool scale_up = true, int stride = 32); // whether to inference with dynamic shape (e.g ONNX export with dynamic shape // or not.) // YOLOv5 official 'export_onnx.py' script will export dynamic ONNX by // default. // while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This // value will // auto check by fastdeploy after the internal Runtime already initialized. bool is_dynamic_input_; }; } // namespace detection } // namespace vision } // namespace fastdeploy