// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/fastdeploy_model.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" #include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h" namespace fastdeploy { namespace vision { /** \brief All OCR series model APIs are defined inside this namespace * */ namespace ocr { /*! @brief DBDetector object is used to load the detection model provided by PaddleOCR. */ class FASTDEPLOY_DECL DBDetector : public FastDeployModel { public: DBDetector(); /** \brief Set path of model file, and the configuration of runtime * * \param[in] model_file Path of model file, e.g ./ch_PP-OCRv3_det_infer/model.pdmodel. * \param[in] params_file Path of parameter file, e.g ./ch_PP-OCRv3_det_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored. * \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`. * \param[in] model_format Model format of the loaded model, default is Paddle format. */ DBDetector(const std::string& model_file, const std::string& params_file = "", const RuntimeOption& custom_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE); /// Get model's name std::string ModelName() const { return "ppocr/ocr_det"; } /** \brief Predict the input image and get OCR detection model result. * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format. * \param[in] boxes_result The output of OCR detection model result will be writen to this structure. * \return true if the prediction is successed, otherwise false. */ virtual bool Predict(cv::Mat* im, std::vector>* boxes_result); // Pre & Post process parameters int max_side_len; float ratio_h{}; float ratio_w{}; double det_db_thresh; double det_db_box_thresh; double det_db_unclip_ratio; std::string det_db_score_mode; bool use_dilation; std::vector mean; std::vector scale; bool is_scale; private: bool Initialize(); /// Preprocess the input data, and set the preprocessed results to `outputs` bool Preprocess(Mat* mat, FDTensor* outputs, std::map>* im_info); /*! @brief Postprocess the inferenced results, and set the final result to `boxes_result` */ bool Postprocess(FDTensor& infer_result, std::vector>* boxes_result, const std::map>& im_info); PostProcessor post_processor_; }; } // namespace ocr } // namespace vision } // namespace fastdeploy