// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/runtime.h" namespace fastdeploy { /*! @brief Base model object for all the vision models */ class FASTDEPLOY_DECL FastDeployModel { public: /// Get model's name virtual std::string ModelName() const { return "NameUndefined"; } /** \brief Inference the model by the runtime. This interface is included in the `Predict()` function, so we don't call `Infer()` directly in most common situation */ virtual bool Infer(std::vector& input_tensors, std::vector* output_tensors); RuntimeOption runtime_option; /** \brief Model's valid cpu backends. This member defined all the cpu backends have successfully tested for the model */ std::vector valid_cpu_backends = {Backend::ORT}; /** Model's valid gpu backends. This member defined all the gpu backends have successfully tested for the model */ std::vector valid_gpu_backends = {Backend::ORT}; /// Get number of inputs for this model virtual int NumInputsOfRuntime() { return runtime_->NumInputs(); } /// Get number of outputs for this model virtual int NumOutputsOfRuntime() { return runtime_->NumOutputs(); } /// Get input information for this model virtual TensorInfo InputInfoOfRuntime(int index) { return runtime_->GetInputInfo(index); } /// Get output information for this model virtual TensorInfo OutputInfoOfRuntime(int index) { return runtime_->GetOutputInfo(index); } /// Check if the model is initialized successfully virtual bool Initialized() const { return runtime_initialized_ && initialized; } /** \brief This is a debug interface, used to record the time of backend runtime * * example code @code * auto model = fastdeploy::vision::PPYOLOE("model.pdmodel", "model.pdiparams", "infer_cfg.yml"); * if (!model.Initialized()) { * std::cerr << "Failed to initialize." << std::endl; * return -1; * } * model.EnableRecordTimeOfRuntime(); * cv::Mat im = cv::imread("test.jpg"); * for (auto i = 0; i < 1000; ++i) { * fastdeploy::vision::DetectionResult result; * model.Predict(&im, &result); * } * model.PrintStatisInfoOfRuntime(); * @endcode After called the `PrintStatisInfoOfRuntime()`, the statistical information of runtime will be printed in the console */ virtual void EnableRecordTimeOfRuntime() { time_of_runtime_.clear(); std::vector().swap(time_of_runtime_); enable_record_time_of_runtime_ = true; } /** \brief Disable to record the time of backend runtime, see `EnableRecordTimeOfRuntime()` for more detail */ virtual void DisableRecordTimeOfRuntime() { enable_record_time_of_runtime_ = false; } /** \brief Print the statistic information of runtime in the console, see function `EnableRecordTimeOfRuntime()` for more detail */ virtual std::map PrintStatisInfoOfRuntime(); /** \brief Check if the `EnableRecordTimeOfRuntime()` method is enabled. */ virtual bool EnabledRecordTimeOfRuntime() { return enable_record_time_of_runtime_; } protected: virtual bool InitRuntime(); virtual bool CreateCpuBackend(); virtual bool CreateGpuBackend(); bool initialized = false; std::vector valid_external_backends; private: std::shared_ptr runtime_; bool runtime_initialized_ = false; // whether to record inference time bool enable_record_time_of_runtime_ = false; // record inference time for backend std::vector time_of_runtime_; }; } // namespace fastdeploy