# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging from .... import FastDeployModel, ModelFormat from .... import c_lib_wrap as C class PaddleClasPreprocessor: def __init__(self, config_file): """Create a preprocessor for PaddleClasModel from configuration file :param config_file: (str)Path of configuration file, e.g resnet50/inference_cls.yaml """ self._preprocessor = C.vision.classification.PaddleClasPreprocessor( config_file) def run(self, input_ims): """Preprocess input images for PaddleClasModel :param: input_ims: (list of numpy.ndarray)The input image :return: list of FDTensor """ return self._preprocessor.run(input_ims) def use_gpu(self, gpu_id=-1): """Use CUDA preprocessors :param: gpu_id: GPU device id """ return self._preprocessor.use_gpu(gpu_id) class PaddleClasPostprocessor: def __init__(self, topk=1): """Create a postprocessor for PaddleClasModel :param topk: (int)Filter the top k classify label """ self._postprocessor = C.vision.classification.PaddleClasPostprocessor( topk) def run(self, runtime_results): """Postprocess the runtime results for PaddleClasModel :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime :return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size) """ return self._postprocessor.run(runtime_results) class PaddleClasModel(FastDeployModel): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a image classification model exported by PaddleClas. :param model_file: (str)Path of model file, e.g resnet50/inference.pdmodel :param params_file: (str)Path of parameters file, e.g resnet50/inference.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str) Path of configuration file for deploy, e.g resnet50/inference_cls.yaml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PaddleClasModel, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PaddleClasModel only support model format of ModelFormat.PADDLE now." self._model = C.vision.classification.PaddleClasModel( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PaddleClas model initialize failed." def predict(self, im, topk=1): """Classify an input image :param im: (numpy.ndarray) The input image data, a 3-D array with layout HWC, BGR format :param topk: (int) Filter the topk classify result, default 1 :return: ClassifyResult """ self.postprocessor.topk = topk return self._model.predict(im) def batch_predict(self, images): """Classify a batch of input image :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return list of ClassifyResult """ return self._model.batch_predict(images) @property def preprocessor(self): """Get PaddleClasPreprocessor object of the loaded model :return PaddleClasPreprocessor """ return self._model.preprocessor @property def postprocessor(self): """Get PaddleClasPostprocessor object of the loaded model :return PaddleClasPostprocessor """ return self._model.postprocessor