# InsightFace Python部署示例 本目录下提供infer_xxx.py快速完成InsighFace模型包括ArcFace\CosFace\VPL\Partial_FC在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。 在部署前,需确认以下两个步骤 - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md) - 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start) 以ArcFace为例子, 提供`infer_arcface.py`快速完成ArcFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成 ```bash #下载部署示例代码 git clone https://github.com/PaddlePaddle/FastDeploy.git cd examples/vision/faceid/insightface/python/ #下载ArcFace模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG # CPU推理 python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device cpu # GPU推理 python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device gpu # GPU上使用TensorRT推理 python infer_arcface.py --model ms1mv3_arcface_r100.onnx --face test_lite_focal_arcface_0.JPG --face_positive test_lite_focal_arcface_1.JPG --face_negative test_lite_focal_arcface_2.JPG --device gpu --use_trt True ``` 运行完成可视化结果如下图所示
```bash Prediction Done! --- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)] --- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)] --- [Face 2]:FaceRecognitionResult: [Dim(512), Min(-3.243411), Max(3.875866), Mean(-0.030682)] Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388 ``` ## InsightFace Python接口 ```python fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX) fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX) fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX) fastdeploy.vision.faceid.VPL(model_file, params_file=None, runtime_option=None, model_format=Frontend.ONNX) ``` ArcFace模型加载和初始化,其中model_file为导出的ONNX模型格式 **参数** > * **model_file**(str): 模型文件路径 > * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定 > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 > * **model_format**(Frontend): 模型格式,默认为ONNX ### predict函数 > ```python > ArcFace.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5) > ``` > > 模型预测结口,输入图像直接输出检测结果。 > > **参数** > > > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式 > > * **conf_threshold**(float): 检测框置信度过滤阈值 > > * **nms_iou_threshold**(float): NMS处理过程中iou阈值 > **返回** > > > 返回`fastdeploy.vision.FaceRecognitionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/) ### 类成员属性 #### 预处理参数 用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果 > > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112] > > * **alpha**(list[float]): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5] > > * **beta**(list[float]): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f] > > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认True > > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认False ## 其它文档 - [InsightFace 模型介绍](..) - [InsightFace C++部署](../cpp) - [模型预测结果说明](../../../../../docs/api/vision_results/) - [如何切换模型推理后端引擎](../../../../how_to_change_backend.md)