# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging from .... import FastDeployModel, ModelFormat from .... import c_lib_wrap as C class PaddleSegModel(FastDeployModel): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a image segmentation model exported by PaddleSeg. :param model_file: (str)Path of model file, e.g unet/model.pdmodel :param params_file: (str)Path of parameters file, e.g unet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str) Path of configuration file for deploy, e.g unet/deploy.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PaddleSegModel, self).__init__(runtime_option) # assert model_format == ModelFormat.PADDLE, "PaddleSeg only support model format of ModelFormat.Paddle now." self._model = C.vision.segmentation.PaddleSegModel( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PaddleSeg model initialize failed." def predict(self, image): """Predict the segmentation result for an input image :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :return: SegmentationResult """ return self._model.predict(image) def batch_predict(self, image_list): """Predict the segmentation results for a batch of input images :param image_list: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return: list of SegmentationResult """ return self._model.batch_predict(image_list) @property def preprocessor(self): """Get PaddleSegPreprocessor object of the loaded model :return: PaddleSegPreprocessor """ return self._model.preprocessor @property def postprocessor(self): """Get PaddleSegPostprocessor object of the loaded model :return: PaddleSegPostprocessor """ return self._model.postprocessor class PaddleSegPreprocessor: def __init__(self, config_file): """Create a preprocessor for PaddleSegModel from configuration file :param config_file: (str)Path of configuration file, e.g ppliteseg/deploy.yaml """ self._preprocessor = C.vision.segmentation.PaddleSegPreprocessor( config_file) def run(self, input_ims): """Preprocess input images for PaddleSegModel :param input_ims: (list of numpy.ndarray)The input image :return: list of FDTensor """ return self._preprocessor.run(input_ims) def disable_normalize_and_permute(self): """To disable normalize and hwc2chw in preprocessing step. """ return self._preprocessor.disable_normalize_and_permute() @property def is_vertical_screen(self): """Atrribute of PP-HumanSeg model. Stating Whether the input image is vertical image(height > width), default value is False :return: value of is_vertical_screen(bool) """ return self._preprocessor.is_vertical_screen @is_vertical_screen.setter def is_vertical_screen(self, value): """Set attribute is_vertical_screen of PP-HumanSeg model. :param value: (bool)The value to set is_vertical_screen """ assert isinstance( value, bool), "The value to set `is_vertical_screen` must be type of bool." self._preprocessor.is_vertical_screen = value class PaddleSegPostprocessor: def __init__(self, config_file): """Create a postprocessor for PaddleSegModel from configuration file :param config_file: (str)Path of configuration file, e.g ppliteseg/deploy.yaml """ self._postprocessor = C.vision.segmentation.PaddleSegPostprocessor( config_file) def run(self, runtime_results, imgs_info): """Postprocess the runtime results for PaddleSegModel :param runtime_results: (list of FDTensor)The output FDTensor results from runtime :param imgs_info: The original input images shape info map, key is "shape_info", value is [[image_height, image_width]] :return: list of SegmentationResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size) """ return self._postprocessor.run(runtime_results, imgs_info) @property def apply_softmax(self): """Atrribute of PaddleSeg model. Stating Whether applying softmax operator in the postprocess, default value is False :return: value of apply_softmax(bool) """ return self._postprocessor.apply_softmax @apply_softmax.setter def apply_softmax(self, value): """Set attribute apply_softmax of PaddleSeg model. :param value: (bool)The value to set apply_softmax """ assert isinstance( value, bool), "The value to set `apply_softmax` must be type of bool." self._postprocessor.apply_softmax = value @property def store_score_map(self): """Atrribute of PaddleSeg model. Stating Whether storing score map in the SegmentationResult, default value is False :return: value of store_score_map(bool) """ return self._postprocessor.store_score_map @store_score_map.setter def store_score_map(self, value): """Set attribute store_score_map of PaddleSeg model. :param value: (bool)The value to set store_score_map """ assert isinstance( value, bool), "The value to set `store_score_map` must be type of bool." self._postprocessor.store_score_map = value