# MODNet Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/environment.md)
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/quick_start)
本目录下提供`infer.py`快速完成MODNet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/matting/modnet/python/
#下载modnet模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/modnet_photographic_portrait_matting.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
# CPU推理
python infer.py --model modnet_photographic_portrait_matting.onnx --image matting_input.jpg --bg matting_bgr.jpg --device cpu
# GPU推理
python infer.py --model modnet_photographic_portrait_matting.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu
# GPU上使用TensorRT推理
python infer.py --model modnet_photographic_portrait_matting.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True
```
运行完成可视化结果如下图所示
## MODNet Python接口
```python
fastdeploy.vision.matting.MODNet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
MODNet模型加载和初始化,其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
> * **model_format**(ModelFormat): 模型格式,默认为ONNX
### predict函数
> ```python
> MODNet.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式
> > * **conf_threshold**(float): 检测框置信度过滤阈值
> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值
> **返回**
>
> > 返回`fastdeploy.vision.MattingResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[256, 256]
> > * **alpha**(list[float]): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
> > * **beta**(list[float]): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f]
> > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认True
## 其它文档
- [MODNet 模型介绍](..)
- [MODNet C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/runtime/how_to_change_backend.md)