[English](README.md) | 简体中文 # PaddleSeg 量化模型部署 FastDeploy已支持部署量化模型,并提供一键模型自动化压缩的工具. 用户可以使用一键模型自动化压缩工具,自行对模型量化后部署, 也可以直接下载FastDeploy提供的量化模型进行部署. ## FastDeploy一键模型自动化压缩工具 FastDeploy 提供了一键模型自动化压缩工具, 能够简单地通过输入一个配置文件, 对模型进行量化. 详细教程请见: [一键模型自动化压缩工具](https://github.com/PaddlePaddle/FastDeploy/tree/develop/tools/common_tools/auto_compression) >> **注意**: 推理量化后的分类模型仍然需要FP32模型文件夹下的deploy.yaml文件, 自行量化的模型文件夹内不包含此yaml文件, 用户从FP32模型文件夹下复制此yaml文件到量化后的模型文件夹内即可。 ## 量化完成的PaddleSeg模型 用户也可以直接下载下表中的量化模型进行部署.(点击模型名字即可下载) | 模型 | 量化方式 | |:----- | :-- | | [PP-LiteSeg-T(STDC1)-cityscapes](https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer_QAT_new.tar) |量化蒸馏训练 | 量化后模型的Benchmark比较,请参考[量化模型 Benchmark](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/quantize.md) ## 支持部署量化模型的硬件 FastDeploy 量化模型部署的过程大致都与FP32模型类似,只是模型量化与非量化的区别,如果硬件在量化模型部署过程有特殊处理,也会在文档中特别标明,因此量化模型部署可以参考如下硬件的链接 | 硬件支持列表 | | | | |:----- | :-- | :-- | :-- | | [NVIDIA GPU](../cpu-gpu) | [X86 CPU](../cpu-gpu)| [飞腾CPU](../cpu-gpu) | [ARM CPU](../cpu-gpu) | | [Intel GPU(独立显卡/集成显卡)](../cpu-gpu) | [昆仑](../kunlun) | [昇腾](../ascend) | [瑞芯微](../rockchip) | | [晶晨](../amlogic) | [算能](../sophgo) |