English | [简体中文](README_CN.md) # InsightFace C++ Deployment Example This direct ory provides examples that `infer_xxx.cc` fast finishes the deployment of InsighFace, including ArcFace\CosFace\VPL\Partial_FC on CPU/GPU and GPU accelerated by TensorRT. Taking ArcFace as an example, we demonstrate how `infer_arcface.cc` fast finishes the deployment of InsighFace on CPU/GPU and GPU accelerated by TensorRT. Before deployment, two steps require confirmation - 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) - 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md) Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. ```bash mkdir build cd build wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # Download the official converted ArcFace model files and test images wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip unzip face_demo.zip # CPU inference ./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 0 # GPU inference ./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 1 # TensorRT inference on GPU ./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 2 ``` The visualized result after running is as follows
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to: - [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md) ## InsightFace C++ Interface ### ArcFace Class ```c++ fastdeploy::vision::faceid::ArcFace( const string& model_file, const string& params_file = "", const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX) ``` ArcFace model loading and initialization, among which model_file is the exported ONNX model format. ### CosFace Class ```c++ fastdeploy::vision::faceid::CosFace( const string& model_file, const string& params_file = "", const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX) ``` CosFace model loading and initialization, among which model_file is the exported ONNX model format. ### PartialFC Class ```c++ fastdeploy::vision::faceid::PartialFC( const string& model_file, const string& params_file = "", const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX) ``` PartialFC model loading and initialization, among which model_file is the exported ONNX model format. ### VPL Class ```c++ fastdeploy::vision::faceid::VPL( const string& model_file, const string& params_file = "", const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::ONNX) ``` VPL model loading and initialization, among which model_file is the exported ONNX model format. **Parameter** > * **model_file**(str): Model file path > * **params_file**(str): Parameter file path. Only passing an empty string when the model is in ONNX format > * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration > * **model_format**(ModelFormat): Model format. ONNX format by default #### Predict function > ```c++ > ArcFace::Predict(const cv::Mat& im, FaceRecognitionResult* result) > ``` > > Model prediction interface. Input images and output detection results. > > **Parameter** > > > * **im**: Input images in HWC or BGR format > > * **result**: Detection results, including detection box and confidence of each box. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for FaceRecognitionResult ### Change pre-processing and post-processing parameters Pre-processing and post-processing parameters can be changed by modifying the member variables of InsightFaceRecognitionPostprocessor and InsightFaceRecognitionPreprocessor #### InsightFaceRecognitionPreprocessor member variables (preprocessing parameters) > > * **size**(vector<int>): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [112, 112]. Revise through InsightFaceRecognitionPreprocessor::SetSize(std::vector& size) > > * **alpha**(vector<float>): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]. Revise through InsightFaceRecognitionPreprocessor::SetAlpha(std::vector& alpha) > > * **beta**(vector<float>): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`. beta defaults to [-1.f, -1.f, -1.f]. Revise through InsightFaceRecognitionPreprocessor::SetBeta(std::vector& beta) #### InsightFaceRecognitionPostprocessor member variables (post-processing parameters) > > * **l2_normalize**(bool): Whether to perform l2 normalization before outputting the face vector. Default false. Revise through InsightFaceRecognitionPostprocessor::SetL2Normalize(bool& l2_normalize) - [Model Description](../../) - [Python Deployment](../python) - [Vision Model Prediction Results](../../../../../docs/api/vision_results/) - [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)