""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import os import time from multiprocessing.shared_memory import SharedMemory from typing import Any, Dict, List import numpy as np import paddle from paddleformers.utils.log import logger from fastdeploy.config import FDConfig class DynamicWeightManager: """Manages model weights loading, updating and shared state across processes.""" def __init__(self, fd_config: FDConfig, models): """Initialize with config and model instances.""" self.fd_config = fd_config self.load_config = fd_config.load_config self.parallel_config = fd_config.parallel_config self.state_dict: Dict[str, paddle.Tensor] = {} self.rank = fd_config.parallel_config.tensor_parallel_rank self.nranks = paddle.distributed.get_world_size() self.meta_src_id = self._get_gpu_id() self.first_load = True self.ipc_path = f"/shared_ipc_meta/ipc_metas_{self.meta_src_id}" if not isinstance(models, List): self.model_list = [models] else: self.model_list = models self._capture_model_state() self.update_parameters() self.finalize_update() logger.info( f"βœ… DynamicLoad model built successfully by {self.load_config.load_strategy}, " f" tp rank={self.rank}, dp rank={fd_config.parallel_config.local_data_parallel_id}, ep rank={fd_config.parallel_config.expert_parallel_rank}, ranks={self.nranks}, " ) @paddle.no_grad() def _capture_model_state(self): """Capture and store initial model parameters state.""" for model in self.model_list: for name, param in model.state_dict().items(): logger.info(f"Model param: {name}, shape={param.shape}, dtype={param.dtype}") self.state_dict[name] = param def update_parameters(self, pid: int = 0) -> None: """Core method to update model parameters based on strategy.""" start_time = time.perf_counter() paddle.device.cuda.empty_cache() # step1 : restart paddle process group if not self.first_load: paddle.distributed.restart_process_group(self.parallel_config.tp_group) if self.parallel_config.enable_expert_parallel: paddle.distributed.restart_process_group(self.parallel_config.ep_group) # step2 : recreat deepep buffer when enable expert parallel if self.parallel_config.enable_expert_parallel and not self.first_load: from fastdeploy.model_executor.layers.moe.ep import DeepEPBufferManager DeepEPBufferManager.recreate_buffer() # ep barrier paddle.distributed.barrier(self.parallel_config.ep_group) # step3 : update model weight strategy_handlers = { "ipc_snapshot": self._update_ipc_snapshot, "ipc": self._update_ipc, } if handler := strategy_handlers.get(self.load_config.load_strategy): handler() else: raise ValueError(f"Unsupported strategy: {self.load_config.load_strategy}") logger.info(f"Update parameters in {time.perf_counter()-start_time:.2f}s") # steps in the runner # step 4: reinitialze kv_cache # step 5: recapture CUDAGraph # step 6: update weight status signal def _update_ipc_snapshot(self): """Update using IPC snapshot strategy for elastic recovery.""" model_path = os.path.join( self.fd_config.model_config.model, f"model_state.tp0{self.meta_src_id}.pdparams", ) try: ipc_state_dict = paddle.load(model_path) except FileNotFoundError: fallback_path = f"/shared_ipc_meta/model_state.tp0{self.meta_src_id}.pdparams" ipc_state_dict = paddle.load(fallback_path) self._update_model_from_state(ipc_state_dict, "snapshot") logger.info(f"IPC snapshot update parameters completed from {model_path}") def _update_ipc(self): """Update using standard IPC strategy (requires Training Worker).""" ipc_meta = paddle.load(self.ipc_path) state_dict = self._convert_ipc_meta_to_tensor(ipc_meta) self._update_model_from_state(state_dict, "raw") logger.info(f"IPC update parameters completed from file: {self.ipc_path}") def clear_parameters(self, pid: int = 0) -> None: """Clear all model parameters and free memory.""" logger.info("start clear paramaters") # step1: release deepep buffer if self.parallel_config.enable_expert_parallel: from fastdeploy.model_executor.layers.moe.ep import DeepEPBufferManager DeepEPBufferManager.clear_buffer() # ep barrier paddle.distributed.barrier(self.parallel_config.ep_group) # shutdown ep group paddle.distributed.shutdown_process_group(self.parallel_config.ep_group) paddle.device.cuda.empty_cache() # step2: release model weight for model in self.model_list: for param in model.state_dict().values(): param._clear_data() self._verify_parameters("clearance") if self.parallel_config.tensor_parallel_size > 1: # tp barrier paddle.distributed.barrier(self.parallel_config.tp_group) # shutdown tp group paddle.distributed.shutdown_process_group(self.parallel_config.tp_group) # step3: update model weight signal # step4: release kv cache in the runner self._update_shared_status(pid, -2) def _update_model_from_state(self, state_dict: Dict[str, paddle.Tensor], src_type: str): """Update model parameters from given state dictionary.""" if len(state_dict) == 0: raise ValueError(f"No parameter found in state dict {state_dict}") update_count = 0 for name, new_param in state_dict.items(): if name not in self.state_dict: logger.debug(f"Ignoring unmatched {src_type} param: {name}") continue target_param = self.state_dict[name] self._validate_parameter_match(name, new_param, target_param) new_param._share_buffer_to(target_param) update_count += 1 logger.info(f"πŸ†— Updated {update_count}/{len(state_dict)} parameters from {src_type} source") def _validate_parameter_match(self, name: str, src: paddle.Tensor, dst: paddle.Tensor): """ιͺŒθ―ε‚数一致性""" if src.dtype != dst.dtype: raise TypeError(f"Type mismatch for {name}: {src.dtype} vs {dst.dtype}") if src.shape != dst.shape: raise ValueError(f"Shape mismatch for {name}: {src.shape} vs {dst.shape}") def finalize_update(self, pid: int = 0): """Finalize update process with verification.""" self._verify_parameters("update") if self.parallel_config.tensor_parallel_size > 1: paddle.distributed.barrier(self.parallel_config.tp_group) if self.parallel_config.enable_expert_parallel: paddle.distributed.barrier(self.parallel_config.ep_group) if not self.first_load: self._update_shared_status(pid, 0) self.first_load = False def _get_gpu_id(self) -> int: """Get current GPU device ID.""" visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", "0").split(",") return int(visible_devices[int(os.getenv("FLAGS_selected_gpus", "0"))]) def _verify_parameters(self, operation: str): """Verify parameters are in expected state after operation.""" expected_initialized = operation == "update" all_valid = True for name, param in self.state_dict.items(): is_initialized = param._is_initialized() if is_initialized != expected_initialized: logger.error( f"Verification failed after {operation}: " f"Param {name} initialized={is_initialized} (expected {expected_initialized})" ) all_valid = False if all_valid: logger.info(f"πŸ’‘ Model Parameter {operation} verified successfully") else: raise RuntimeError(f"❌ Model Parameter {operation} verification failed") @staticmethod def _convert_ipc_meta_to_tensor( ipc_meta: Dict[str, Any], ) -> Dict[str, paddle.Tensor]: """Convert IPC metadata to tensor dictionary.""" converted = {} for name, meta in ipc_meta.items(): meta[0] = meta[0].encode("latin-1") meta[6] = int(os.getenv("FLAGS_selected_gpus", "0")) tensor = paddle.base.core.LoDTensor._new_shared_cuda(tuple(meta)) converted[name] = paddle.to_tensor(tensor) return converted def _log_memory(self, context: str): """Log current GPU memory usage.""" max_alloc = paddle.device.cuda.max_memory_allocated() / (1024**3) max_reserved = paddle.device.cuda.max_memory_reserved() / (1024**3) curr_alloc = paddle.device.cuda.memory_allocated() / (1024**3) curr_reserved = paddle.device.cuda.memory_reserved() / (1024**3) logger.warning( f"GPU memory usage {context}:" f"max_allocated: {max_alloc:.2f}GB\n" f"max_reserved: {max_reserved:.2f}GB\n" f"current_allocated: {curr_alloc:.2f}GB\n" f"current_reserved: {curr_reserved:.2f}GB" ) def _update_shared_status(self, pid: int, status: int) -> None: """Update shared memory status flag for inter-process communication.""" array = np.zeros([1], dtype=np.int32) shm = SharedMemory(create=False, size=array.nbytes, name=f"model_weights_status.{pid}") value = np.ndarray(array.shape, dtype=array.dtype, buffer=shm.buf) if self.rank == 0: value[self.rank] = status @staticmethod def check_model_weights_status(model_weights_status, model_runner, pid): """ check model weights status """ is_stop = 0 while model_weights_status.value[0] != 0: if model_weights_status.value[0] == 1: logger.info("infer engine stopped! start to load new checkpoint...") model_runner.update_parameters(pid) elif model_weights_status.value[0] == -1: logger.info("infer engine stopped! start to clear checkpoint...") model_runner.clear_requests() model_runner.clear_parameters(pid) while True: if model_weights_status.value[0] == 0: logger.info("finished loading new checkpoint") break elif is_stop == 1 or (model_weights_status.value[0] == -2 and is_stop == 0): if is_stop == 0: logger.info("finished clearing checkpoint") is_stop = 1 time.sleep(0.001) break else: time.sleep(0.001)