# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os import numpy as np import pickle def test_pptracking_cpu(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pptracking.tgz" input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4" fd.download_and_decompress(model_url, ".") fd.download(input_url, ".") model_path = "pptracking/fairmot_hrnetv2_w18_dlafpn_30e_576x320" # use default backend runtime_option = fd.RuntimeOption() model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") config_file = os.path.join(model_path, "infer_cfg.yml") model = fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=runtime_option) cap = cv2.VideoCapture("./person.mp4") frame_id = 0 while True: _, frame = cap.read() if frame is None: break result = model.predict(frame) # compare diff expect = pickle.load(open("pptracking/frame" + str(frame_id) + ".pkl", "rb")) diff_boxes = np.fabs(np.array(expect["boxes"]) - np.array(result.boxes)) diff_scores = np.fabs(np.array(expect["scores"]) - np.array(result.scores)) diff = max(diff_boxes.max(), diff_scores.max()) thres = 1e-05 assert diff < thres, "The label diff is %f, which is bigger than %f" % (diff, thres) frame_id = frame_id + 1 cv2.waitKey(30) if frame_id >= 10: cap.release() cv2.destroyAllWindows() break def test_pptracking_gpu(): model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/pptracking.tgz" input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4" fd.download_and_decompress(model_url, ".") fd.download(input_url, ".") model_path = "pptracking/fairmot_hrnetv2_w18_dlafpn_30e_576x320" runtime_option = fd.RuntimeOption() runtime_option.use_gpu() # Not supported trt backend, up to now # runtime_option.use_trt_backend() model_file = os.path.join(model_path, "model.pdmodel") params_file = os.path.join(model_path, "model.pdiparams") config_file = os.path.join(model_path, "infer_cfg.yml") model = fd.vision.tracking.PPTracking(model_file, params_file, config_file, runtime_option=runtime_option) cap = cv2.VideoCapture("./person.mp4") frame_id = 0 while True: _, frame = cap.read() if frame is None: break result = model.predict(frame) # compare diff expect = pickle.load(open("pptracking/frame" + str(frame_id) + ".pkl", "rb")) diff_boxes = np.fabs(np.array(expect["boxes"]) - np.array(result.boxes)) diff_scores = np.fabs(np.array(expect["scores"]) - np.array(result.scores)) diff = max(diff_boxes.max(), diff_scores.max()) thres = 1e-05 assert diff < thres, "The label diff is %f, which is bigger than %f" % (diff, thres) frame_id = frame_id + 1 cv2.waitKey(30) if frame_id >= 10: cap.release() cv2.destroyAllWindows() break