# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging from .... import FastDeployModel, ModelFormat from .... import c_lib_wrap as C class PFLD(FastDeployModel): def __init__(self, model_file, params_file="", runtime_option=None, model_format=ModelFormat.ONNX): """Load a face alignment model exported by PFLD. :param model_file: (str)Path of model file, e.g pfld/pfld-106-v3.onnx :param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX """ super(PFLD, self).__init__(runtime_option) assert model_format == ModelFormat.ONNX, "PFLD only support model format of ModelFormat.ONNX now." self._model = C.vision.facealign.PFLD( model_file, params_file, self._runtime_option, model_format) assert self.initialized, "PFLD initialize failed." def predict(self, input_image): """Detect an input image landmarks :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :return: FaceAlignmentResult """ return self._model.predict(input_image) @property def size(self): """ Returns the preprocess image size, default (112, 112) """ return self._model.size @size.setter def size(self, wh): """ Set the preprocess image size, default (112, 112) """ assert isinstance(wh, (list, tuple)),\ "The value to set `size` must be type of tuple or list." assert len(wh) == 2,\ "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format( len(wh)) self._model.size = wh