""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import argparse import time from collections import defaultdict from concurrent.futures import ThreadPoolExecutor import numpy as np import paddle import paddle.distributed as dist import paddle.distributed.fleet as fleet from fastdeploy.engine.config import ModelConfig from fastdeploy.inter_communicator import EngineWorkerQueue, IPCSignal from fastdeploy.utils import get_logger, none_or_str logger = get_logger("worker", "worker.log") class PrefillTracker: """ Record the prefill time of the request """ def __init__(self, engine_pid): self.start_times = defaultdict(float) prefill_time_data = np.zeros([100], dtype=np.float32) self.prefill_time_signal = IPCSignal(name="prefill_time_signal", array=prefill_time_data, dtype=np.float32, suffix=engine_pid, create=False) self.current_index = 0 self.executor = ThreadPoolExecutor(max_workers=1) def start_prefill(self, task_idx): """ Record the start time of the prefill process for a given task index. Args: task_idx (int): The index of the task being prefetched. """ self.start_times[task_idx] = time.time() def end_prefill(self, task_idx): """ Record the end time of the prefill process for a given task index and asynchronously submit the duration for metric recording. Args: task_idx (int): The index of the task being prefetched. """ if task_idx in self.start_times: duration = time.time() - self.start_times[task_idx] # Submit metric recording to the executor for asynchronous execution self.executor.submit(self._record_metrics, duration) del self.start_times[task_idx] def _record_metrics(self, duration): """ Internal method to record the prefill duration into the signal buffer. Logs the duration and updates a circular buffer of timing metrics. Args: duration (float): Time taken for the prefill process in seconds. """ self.prefill_time_signal.value[self.current_index] = duration self.current_index = (self.current_index + 1) % len( self.prefill_time_signal.value) def __del__(self): """Clean up resources""" if hasattr(self, 'executor'): self.executor.shutdown(wait=False) class Worker: def __init__(self, args): """ Args: args (ArgumentParser): 命令行参数,包含模型名称、端口号等信息。 Returns: None, 无返回值,初始化完成后会将相关参数和对象保存到类属性中。 Raises: None, 没有异常抛出。 """ self.args = args self.MAX_INFER_SEED = 9223372036854775806 paddle.set_default_dtype(args.dtype) self.device_ids = self.args.device_ids.split(",") self.model_cfg = ModelConfig(args.model_name_or_path) from fastdeploy.worker.vl_gpu_model_runner import GPUVLModelRunner self.init_dist_env() self.format_print_configuration() self.helper_tensors = {} local_rank = self.rank % self.args.tensor_parallel_size self.local_data_parallel_id = self.rank // self.args.tensor_parallel_size self.infer_engine = GPUVLModelRunner(config=self.model_cfg, args=self.args, nranks=self.nranks, rank=self.rank) self.prefill_tracker = PrefillTracker(args.engine_pid) # TODO 多机 address = ('0.0.0.0', self.args.engine_worker_queue_port) self.engine_worker_queue = EngineWorkerQueue( address=address, is_server=False, num_client=self.nranks, client_id=local_rank, local_data_parallel_id=self.local_data_parallel_id) self.init_health() def init_dist_env(self, seed=20): """ init distributed env """ self.nranks = dist.get_world_size() strategy = fleet.DistributedStrategy() strategy.hybrid_configs = { "dp_degree": 1, "mp_degree": self.nranks, "pp_degree": 1, "sharding_degree": 1, } # Set control in tensor parallel strategy.tensor_parallel_configs = {"tensor_init_seed": seed} fleet.init(is_collective=True, strategy=strategy) self.rank = fleet.worker_index() def init_health(self): # worker_ready_signal 用于engine感知各worker进程是否Ready worker_ready_signal_data = np.zeros(shape=[self.nranks], dtype=np.int32) self.worker_ready_signal = IPCSignal(name="worker_ready_signal", array=worker_ready_signal_data, dtype=np.int32, suffix=self.args.engine_pid, create=False) self.worker_ready_signal.value[self.rank] = 1 # worker_live_signal 用于engine感知各worker进程是否存活,记录每个step 时间 worker_healthy_live_recorded_time_array = np.zeros(shape=[self.nranks], dtype=np.int32) self.worker_healthy_live_signal = IPCSignal( name="worker_healthy_live_signal", array=worker_healthy_live_recorded_time_array, dtype=np.int32, suffix=self.args.engine_pid, create=False) self.worker_healthy_live_signal.value[self.rank] = int(time.time()) # exist_task_signal 用于各worker进程感知是否有新Task需要处理 exist_task_signal_data = np.zeros([1], dtype=np.int32) self.exist_task_signal = IPCSignal(name="exist_task_signal", array=exist_task_signal_data, dtype=np.int32, suffix=self.args.engine_pid, create=False) # exist_swapped_task_signal 用于engine感知worker中是否存在swapped task exist_swapped_task_signal_data = np.zeros([1], dtype=np.int32) self.exist_swapped_task_signal = IPCSignal( name="exist_swapped_task_signal", array=exist_swapped_task_signal_data, dtype=np.int32, suffix=self.args.engine_pid, create=False) # model_weights_status 用于engine感知各worker中模型权重状态 model_weights_status = np.zeros([1], dtype=np.int32) self.model_weights_status_signal = IPCSignal( name="model_weights_status", array=model_weights_status, dtype=np.int32, suffix=self.args.engine_pid, create=False) def format_print_configuration(self): """ print model config """ logger.info("=============== Model Information ==============") for k, v in self.model_cfg.__dict__.items(): logger.info("{:<20}:{:<6}{}".format(k, "", v)) logger.info("=============== Service Configuration ===============") for k, v in vars(self.args).items(): logger.info("{:<20}:{:<6}{}".format(k, "", v)) logger.info("=====================================================\n") def step_cuda(self): """ step cuda """ from fastdeploy.model_executor.ops.gpu import (step_reschedule, step_system_cache) if self.args.enable_prefix_caching: step_system_cache( self.infer_engine.share_inputs["stop_flags"], self.infer_engine.share_inputs["seq_lens_this_time"], self.infer_engine.share_inputs["step_seq_lens_encoder"], self.infer_engine.share_inputs["step_seq_lens_decoder"], self.infer_engine.share_inputs["seq_lens_encoder"], self.infer_engine.share_inputs["seq_lens_decoder"], self.infer_engine.share_inputs["block_tables"], self.infer_engine.share_inputs["encoder_block_lens"], self.infer_engine.share_inputs["is_block_step"], self.infer_engine.share_inputs["step_block_list"], self.infer_engine.share_inputs["step_lens"], self.infer_engine.share_inputs["recover_block_list"], self.infer_engine.share_inputs["recover_lens"], self.infer_engine.share_inputs["need_block_list"], self.infer_engine.share_inputs["need_block_len"], self.infer_engine.share_inputs["used_list_len"], self.infer_engine.share_inputs["free_list"], self.infer_engine.share_inputs["free_list_len"], self.infer_engine.share_inputs["input_ids"], self.infer_engine.share_inputs["pre_ids"], self.infer_engine.share_inputs["step_idx"], self.infer_engine.share_inputs["next_tokens"], self.infer_engine.share_inputs["first_token_ids"], self.args.block_size, self.args.enc_dec_block_num) else: step_reschedule( self.infer_engine.share_inputs["stop_flags"], self.infer_engine.share_inputs["seq_lens_this_time"], self.infer_engine.share_inputs["step_seq_lens_encoder"], self.infer_engine.share_inputs["seq_lens_encoder"], self.infer_engine.share_inputs["seq_lens_decoder"], self.infer_engine.share_inputs["block_tables"], self.infer_engine.share_inputs["encoder_block_lens"], self.infer_engine.share_inputs["is_block_step"], self.infer_engine.share_inputs["step_block_list"], self.infer_engine.share_inputs["step_lens"], self.infer_engine.share_inputs["recover_block_list"], self.infer_engine.share_inputs["recover_lens"], self.infer_engine.share_inputs["need_block_list"], self.infer_engine.share_inputs["need_block_len"], self.infer_engine.share_inputs["used_list_len"], self.infer_engine.share_inputs["free_list"], self.infer_engine.share_inputs["free_list_len"], self.infer_engine.share_inputs["input_ids"], self.infer_engine.share_inputs["pre_ids"], self.infer_engine.share_inputs["step_idx"], self.infer_engine.share_inputs["next_tokens"], self.infer_engine.share_inputs["first_token_ids"], self.args.block_size, self.args.enc_dec_block_num, ) def check_model_weights_status(self): """ check model weights status """ is_stop = 0 while self.model_weights_status_signal.value[0] != 0: if self.model_weights_status_signal.value[0] == 1: logger.info( f"infer engine stopped! start to load new checkpoint... {self.rank}" ) self.infer_engine.update_parameters(self.args.engine_pid) elif self.model_weights_status_signal.value[0] == -1: logger.info( f"infer engine stopped! start to clear checkpoint... {self.rank}" ) self.infer_engine.clear_parameters(self.args.engine_pid) while True: if self.model_weights_status_signal.value[0] == 0: logger.info(f"finished loading new checkpoint {self.rank}") break elif is_stop == 1 or (self.model_weights_status_signal.value[0] == -2 and is_stop == 0): if is_stop == 0: logger.info( f"finished clearing checkpoint {self.rank}") is_stop = 1 time.sleep(0.001) break else: time.sleep(0.001) def run(self): """ 运行函数,不断地从队列中获取任务并进行推理。 当队列为空或者所有节点都处于等待状态时,将会休眠一段时间再次尝试获取任务。 Args: None. Returns: None. Raises: None. """ infer_seed_increment = paddle.full(shape=[self.args.max_num_seqs, 1], fill_value=4, dtype="int64") self.nnode = 1 while True: if self.rank == 0: if self.model_weights_status_signal.value[0] != 0: self.exist_task_signal.value[0] = 2 else: self.exist_task_signal.value[0] = 0 if self.nranks > 1: paddle.distributed.barrier() if self.exist_task_signal.value[0] == 2: self.check_model_weights_status() self.insert_step = False self.worker_healthy_live_signal.value[self.rank] = int(time.time()) mp_num_per_node = self.nranks if self.rank % mp_num_per_node == 0: if self.engine_worker_queue.num_tasks( ) > 0 and self.infer_engine.prefill_finished(): if self.nnode > 1: self.engine_worker_queue.read_finish_flag.set(1) else: self.exist_task_signal.value[0] = 1 if self.nranks > 1: paddle.distributed.barrier() if self.exist_task_signal.value[ 0] == 1 or self.engine_worker_queue.read_finish_flag.get( ) == 1: logger.info(f"Rank: {self.rank} Detected new requests.") self.insert_step = True tasks, read_finish = self.engine_worker_queue.get_tasks() if read_finish: self.exist_task_signal.value[0] = 0 self.engine_worker_queue.read_finish_flag.set(0) req_dicts = [] for req_dict, bsz in tasks: num_running_requests = int(bsz) req_dicts.extend(req_dict) req_ids = [req.request_id for req in req_dicts] logger.info(f"Rank: {self.rank}, num_running_requests: {num_running_requests}, " \ f"num_insert_requests: {len(req_dicts)}. {req_ids}") self.infer_engine.dy_input_preprocess(req_dicts) for req_dict in req_dicts: if self.infer_engine.share_inputs["seq_lens_this_time"][ req_dict.idx] > 1: self.prefill_tracker.start_prefill(req_dict.idx) self.infer_engine.share_inputs["not_need_stop"][0] = True if not self.infer_engine.share_inputs["not_need_stop"]: time.sleep(0.001) continue self.infer_engine.generate() self.infer_engine.share_inputs["infer_seed"].add_( infer_seed_increment) self.infer_engine.share_inputs[ "infer_seed"][:] %= self.MAX_INFER_SEED for req_dict in req_dicts: if (self.infer_engine.share_inputs["seq_lens_this_time"][ req_dict.idx] == 1 and req_dict.idx in self.prefill_tracker.start_times): self.prefill_tracker.end_prefill(req_dict.idx) self.infer_engine.update_chunked_prefill(req_dicts) self.step_cuda() def determine_num_available_blocks(self): """Profiles the peak memory usage of the model to determine how many KV blocks may be allocated without OOMs. The engine will first conduct a profiling of the existing memory usage. Then, it calculate the maximum possible number of GPU and CPU blocks that can be allocated with the remaining free memory. .. tip:: You may limit the usage of GPU memory by adjusting the `gpu_memory_utilization` parameter. """ # Profile the memory usage of the model and get the maximum number of # cache blocks that can be allocated with the remaining free memory. start_time = time.time() GiB = 1024**3 paddle.device.cuda.empty_cache() paddle.device.cuda.reset_max_memory_allocated() before_activation_gpu_memory = paddle.device.cuda.max_memory_allocated( ) / GiB logger.info( f"before activate gpu memory: {before_activation_gpu_memory} GiB.") import gc import pynvml pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex( int(self.device_ids[self.rank])) meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle) total_gpu_memory = meminfo.total / GiB used_gpu_memory = meminfo.used / GiB pynvml.nvmlShutdown() logger.info(f"used gpu memory: {used_gpu_memory} GiB.") self.run_profile() current_max_peak_gpu_memory = paddle.device.cuda.max_memory_reserved( ) / GiB logger.info( f"current max peak gpu memory: {current_max_peak_gpu_memory} GiB.") per_block_memory_used = self.infer_engine._cal_theortical_kvcache( ) / GiB logger.info(f"each kv cache block takes {per_block_memory_used} GiB.") used_cache_gpu_memory = self.args.total_block_num * per_block_memory_used logger.info(f"used cache gpu memory: {used_cache_gpu_memory} GiB.") model_weights_memory = used_gpu_memory - used_cache_gpu_memory paddle_peak_increase = current_max_peak_gpu_memory - before_activation_gpu_memory memory_for_current_instance = total_gpu_memory * self.args.gpu_memory_utilization available_kv_cache_memory = memory_for_current_instance - used_gpu_memory - \ paddle_peak_increase + used_cache_gpu_memory num_gpu_blocks = max( int(available_kv_cache_memory // per_block_memory_used), self.args.total_block_num) profile_time = time.time() - start_time msg = (f"Memory profiling takes {profile_time:.2f} seconds\n" "the current instance can use " "total_gpu_memory " f"({(total_gpu_memory):.2f}GiB)" " x gpu_memory_utilization " f"({self.args.gpu_memory_utilization})" f" = {(memory_for_current_instance):.2f}GiB\n" "model weights take " f"{(model_weights_memory ):.2f}GiB;" " Paddle activation peak memory takes " f"{(paddle_peak_increase):.2f}GiB;" " the rest of the memory reserved for KV Cache is " f"{(available_kv_cache_memory):.2f}GiB.") self.infer_engine.record_profile_msg = { "per_block_memory_used": per_block_memory_used, "paddle_peak_increase": paddle_peak_increase, } logger.info(msg) # Final cleanup get_profile_block_num = np.zeros(shape=[self.nranks], dtype=np.int32) self.get_profile_block_num_signal = IPCSignal( name="get_profile_block_num", array=get_profile_block_num, dtype=np.int32, suffix=self.args.engine_pid, create=False) self.get_profile_block_num_signal.value[self.rank] = int( num_gpu_blocks) while np.any(self.get_profile_block_num_signal.value <= 0): time.sleep(0.01) num_gpu_blocks = self.get_profile_block_num_signal.value.min().item() self.get_profile_block_num_signal.value[self.rank] = int( num_gpu_blocks) logger.info( f"{self.get_profile_block_num_signal.value[self.rank]} GPU KV blocks can be allocated." ) self.infer_engine.num_gpu_blocks = num_gpu_blocks self.infer_engine._update_share_input_block_num() paddle.device.cuda.empty_cache() gc.collect() def run_profile(self): """ run profile """ infer_seed_increment = paddle.full(shape=[self.args.max_num_seqs, 1], fill_value=4, dtype="int64") self.infer_engine.dummy_input(self.args.max_num_batched_tokens, self.args.max_num_seqs) while True: if self.nranks > 1: paddle.distributed.barrier() self.infer_engine.generate() self.infer_engine.share_inputs["infer_seed"].add_( infer_seed_increment) self.infer_engine.share_inputs[ "infer_seed"][:] %= self.MAX_INFER_SEED self.step_cuda() if int((self.infer_engine.share_inputs['seq_lens_this_time'] > 0).sum()) == 0: break def parse_args(): """ parse args from command line """ parser = argparse.ArgumentParser("FastDeploy LLM Inference") parser.add_argument("-m", "--model_name_or_path", type=str, default="./output", help="model dir") parser.add_argument("-mbs", "--max_num_seqs", type=int, default=34, help="max batch size") parser.add_argument("--total_block_num", type=int, default=2000) parser.add_argument("--block_size", type=int, default=64) parser.add_argument("--engine_worker_queue_port", type=int, default=9923) parser.add_argument("--max_model_len", type=int, default=3072, help="max model len") parser.add_argument("--device_ids", type=str, default="0", help="cuda visible devices") parser.add_argument("--dtype", type=str, default="bfloat16", help="input dtype") parser.add_argument("--enc_dec_block_num", type=int, default=1, help="encoder's decoder num") parser.add_argument("--kv_cache_ratio", type=float, default=0.7, help="kv cache ratio for input") parser.add_argument("--first_token_id", type=int, default=1, help="first token id") parser.add_argument("--gpu_memory_utilization", type=float, default=0.9, help="gpu memory utilization") parser.add_argument("--engine_pid", type=int, default=None, help="Process ID of engine") parser.add_argument("--do_profile", action='store_true', help="do profile or not") parser.add_argument("--dynamic_load_weight", action='store_true', help="dynamic load weight or not") parser.add_argument("--pad_token_id", type=int, default=-1, help="pad token id") parser.add_argument("--eos_tokens_lens", type=int, default=2, help="eos token lens") parser.add_argument("--enable_chunked_prefill", action='store_true', help="enable chunked prefill") parser.add_argument( "--speculative_method", default=None, type=none_or_str, choices=[None, "ngram", "mtp"], ) parser.add_argument( "--speculative_max_draft_token_num", default=1, type=int, ) parser.add_argument( "--speculative_model_name_or_path", default="", type=str, ) parser.add_argument( "--speculative_model_quantization", default="", type=str, ) parser.add_argument( "--attention_backend", default="APPEND_ATTN", type=str, choices=[ "APPEND_ATTN", ], ) parser.add_argument("--max_num_batched_tokens", type=int, default=2048, help="max num batched tokens") parser.add_argument("--enable_prefix_caching", action='store_true', help="enable prefix cache") parser.add_argument("--splitwise_role", type=str, default="mixed", help="splitwise role") parser.add_argument("--ori_vocab_size", type=int, default=None) parser.add_argument("--tensor_parallel_size", type=int, default=1, help="tensor parallel size") parser.add_argument("--expert_parallel_size", type=int, default=1, help="expert parallel size") parser.add_argument("--quantization", type=str, default="", help="Quantization name for the model, currentlly support " \ "'wint4', 'wint8'," \ "default is None. The priority of this configuration "\ "is lower than that of the config file. " \ "More complex quantization methods need to be configured via the config file.") parser.add_argument("--enable_static_graph_inference", action='store_true', help="Whether to use static mode; if enabled, " \ "'paddle.to_static' will be used to convert dynamic to static.") parser.add_argument("--use_cudagraph", action='store_true', help="Flags to enable cuda graph.") parser.add_argument("--max_capture_batch_size", type=int, default=64, help="Maximum of Batch Size for Warm Up.") parser.add_argument("--guided_decoding_backend", type=str, default="off", help="guided decoding backend") parser.add_argument("--disable_any_whitespace", action='store_false', help="Disable any whitespace for guided decoding.") args = parser.parse_args() return args def main(): """ start worker """ args = parse_args() worker = Worker(args) if args.do_profile: worker.determine_num_available_blocks() worker.run() if __name__ == "__main__": main()