""" # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import annotations from functools import partial import paddle from paddle import nn from paddleformers.transformers import PretrainedModel from paddleformers.utils.log import logger from fastdeploy.config import FDConfig, ModelConfig from fastdeploy.model_executor.graph_optimization.decorator import \ support_graph_optimization from fastdeploy.model_executor.layers.attention import Attention from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding from fastdeploy.model_executor.layers.linear import (QKVParallelLinear, RowParallelLinear) from fastdeploy.model_executor.layers.lm_head import ParallelLMHead from fastdeploy.model_executor.layers.normalization import RMSNorm from fastdeploy.model_executor.models.model_base import ModelForCasualLM from fastdeploy.model_executor.models.qwen2 import Qwen2DecoderLayer, Qwen2MLP from fastdeploy.worker.forward_meta import ForwardMeta class Qwen3MLP(Qwen2MLP): """ """ pass class Qwen3Attention(nn.Layer): """ """ def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str = "") -> None: super().__init__() self.fd_config = fd_config self.head_dim = fd_config.model_config.head_dim nranks = fd_config.parallel_config.tensor_parallel_degree self.q_size = fd_config.model_config.num_attention_heads * self.head_dim // nranks self.kv_size = fd_config.model_config.num_key_value_heads * self.head_dim // nranks self.qkv_proj = QKVParallelLinear(fd_config=fd_config, prefix=f"{prefix}.qkv_proj", with_bias=False) self.o_proj = RowParallelLinear( fd_config=fd_config, prefix=f"{prefix}.o_proj", input_size=fd_config.model_config.head_dim * fd_config.model_config.num_attention_heads // nranks, output_size=fd_config.model_config.hidden_size, ) self.attn = Attention(fd_config=fd_config, layer_id=layer_id, prefix=prefix, use_neox_rotary_style=True) self.q_norm = RMSNorm(fd_config=fd_config, hidden_size=fd_config.model_config.head_dim, eps=1e-6, prefix=f"{prefix}.q_norm", begin_norm_axis=2) self.k_norm = RMSNorm(fd_config=fd_config, hidden_size=fd_config.model_config.head_dim, eps=1e-6, prefix=f"{prefix}.k_norm", begin_norm_axis=2) def load_state_dict(self, state_dict): """ """ self.qkv_proj.load_state_dict(state_dict) self.o_proj.load_state_dict(state_dict) self.q_norm.load_state_dict(state_dict) self.k_norm.load_state_dict(state_dict) def forward( self, forward_meta: ForwardMeta, hidden_states: paddle.Tensor, ): """ """ qkv_out = self.qkv_proj(hidden_states) # origin_qkv_out = qkv_out q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size], axis=-1) q_by_head = q.reshape( [*q.shape[:-1], q.shape[-1] // self.head_dim, self.head_dim]) q_by_head = self.q_norm(q_by_head) q = q_by_head.reshape(q.shape) k_by_head = k.reshape( [*k.shape[:-1], k.shape[-1] // self.head_dim, self.head_dim]) k_by_head = self.k_norm(k_by_head) k = k_by_head.reshape(k.shape) qkv_out = paddle.concat([q, k, v], axis=-1) atten_out = self.attn( qkv=qkv_out, forward_meta=forward_meta, ) output = self.o_proj(atten_out) return output class Qwen3DecoderLayer(Qwen2DecoderLayer): """ """ def __init__( self, fd_config: FDConfig, prefix: str = "", ) -> None: super().__init__(fd_config, prefix) layer_id = int(prefix.split(sep='.')[-1]) self.self_attn = Qwen3Attention(fd_config=fd_config, layer_id=layer_id, prefix=f"{prefix}.self_attn") @support_graph_optimization class Qwen3Model(nn.Layer): """ """ def __init__( self, fd_config: FDConfig = None, ): """ Initializer for the Qwen3Model class. Args: """ super().__init__() self.num_layers = fd_config.model_config.num_layers fd_config.model_config.prefix_name = "model" fd_config.model_config.tie_word_embeddings = True self.embeddings = VocabParallelEmbedding( fd_config=fd_config, num_embeddings=fd_config.model_config.vocab_size, embedding_dim=fd_config.model_config.hidden_size, params_dtype=paddle.get_default_dtype, prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"), ) self.layers = nn.LayerList([ Qwen3DecoderLayer( fd_config=fd_config, prefix=f"{fd_config.model_config.prefix_name}.layers.{i}") for i in range(self.num_layers) ]) self.norm = RMSNorm( fd_config, hidden_size=fd_config.model_config.hidden_size, eps=1e-6, prefix=f"{fd_config.model_config.prefix_name}.norm", ) def load_state_dict(self, state_dict): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ self.embeddings.load_state_dict(state_dict) self.norm.load_state_dict(state_dict) for i in range(self.num_layers): logger.info(f"Start load layer {i}") self.layers[i].load_state_dict(state_dict) def forward( self, ids_remove_padding: paddle.Tensor, forward_meta: ForwardMeta, ): """ """ hidden_states = self.embeddings(ids_remove_padding=ids_remove_padding) residual = None for i in range(self.num_layers): hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual) hidden_states = hidden_states + residual out = self.norm(hidden_states) return out class Qwen3ForCausalLM(ModelForCasualLM): """ Qwen3ForCausalLM """ def __init__(self, fd_config: FDConfig): """ Args: fd_config (FDConfig): Configurations for the LLM model. """ super(Qwen3ForCausalLM, self).__init__(fd_config) self.model = Qwen3Model(fd_config=fd_config) self.ori_vocab_size = fd_config.model_config.ori_vocab_size self.lm_head = ParallelLMHead( fd_config=fd_config, embedding_dim=fd_config.model_config.hidden_size, num_embeddings=fd_config.model_config.vocab_size, prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"), ) self.tie_word_embeddings = fd_config.model_config.tie_word_embeddings @classmethod def name(self): """ """ return "Qwen3ForCausalLM" @paddle.no_grad() def set_state_dict(self, state_dict): """ Load model parameters from a given state dictionary. Args: state_dict (dict[str, np.ndarray | paddle.Tensor]): A dictionary containing model parameters, where keys are parameter names and values are NumPy arrays or PaddlePaddle tensors. """ self.model.load_state_dict(state_dict) if self.tie_word_embeddings: self.lm_head.out_linear.weight.set_value( self.model.embeddings.word_embeddings.weight.transpose([1, 0])) self.lm_head.load_state_dict(state_dict) def compute_logits(self, hidden_states: paddle.Tensor): """ """ logits = self.lm_head(hidden_states) logits = paddle.cast(logits, paddle.float32) logits[:, self.ori_vocab_size:] = -float("inf") return logits def forward( self, ids_remove_padding: paddle.Tensor, forward_meta: ForwardMeta, ): """ """ hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta) return hidden_states class Qwen3PretrainedModel(PretrainedModel): """ Qwen3PretrainedModel """ config_class = FDConfig def _init_weight(self, layer): """ _init_weight """ return None @classmethod def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True): from paddleformers.transformers.conversion_utils import \ split_or_merge_func fn = split_or_merge_func( is_split=is_split, tensor_parallel_degree=config.tensor_parallel_degree, tensor_parallel_rank=config.tensor_parallel_rank, num_attention_heads=config.num_attention_heads, ) def get_tensor_parallel_split_mappings(num_layers): final_actions = {} base_actions = { # Row Linear "embed_tokens.weight": partial(fn, is_column=False), "layers.0.self_attn.o_proj.weight": partial(fn, is_column=False), "layers.0.mlp.down_proj.weight": partial(fn, is_column=False), } # Column Linear base_actions["layers.0.self_attn.q_proj.weight"] = partial( fn, is_column=True) base_actions["layers.0.self_attn.q_proj.bias"] = partial( fn, is_column=True) # if we have enough num_key_value_heads to split, then split it. if config.num_key_value_heads % config.tensor_parallel_degree == 0: base_actions["layers.0.self_attn.k_proj.weight"] = partial( fn, is_column=True) base_actions["layers.0.self_attn.v_proj.weight"] = partial( fn, is_column=True) base_actions["layers.0.mlp.gate_proj.weight"] = partial( fn, is_column=True) base_actions["layers.0.mlp.up_proj.weight"] = partial( fn, is_column=True) for key, action in base_actions.items(): if "layers.0." in key: for i in range(num_layers): final_actions[key.replace("layers.0.", f"layers.{i}.")] = action final_actions[key] = action return final_actions mappings = get_tensor_parallel_split_mappings(config.num_layers) return mappings