# WINT2 Quantization Weights are compressed offline using the CCQ (Convolutional Coding Quantization) method. The actual stored numerical type of weights is INT8, with 4 weights packed into each INT8 value, equivalent to 2 bits per weight. Activations are not quantized. During inference, weights are dequantized and decoded in real-time to BF16 numerical type, and calculations are performed using BF16 numerical type. - **Supported Hardware**: GPU - **Supported Architecture**: MoE architecture CCQ WINT2 is generally used in resource-constrained and low-threshold scenarios. Taking ERNIE-4.5-300B-A47B as an example, weights are compressed to 89GB, supporting single-card deployment on 141GB H20. ## Run WINT2 Inference Service ``` python -m fastdeploy.entrypoints.openai.api_server \ --model baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle \ --port 8180 --engine-worker-queue-port 8181 \ --cache-queue-port 8182 --metrics-port 8182 \ --tensor-parallel-size 1 \ --max-model-len 32768 \ --max-num-seqs 32 ``` By specifying `--model baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle`, the offline quantized WINT2 model can be automatically downloaded from AIStudio. In the config.json file of this model, there will be WINT2 quantization-related configuration information, so there's no need to set `--quantization` when starting the inference service. Example of quantization configuration in the model's config.json file: ``` "quantization_config": { "dense_quant_type": "wint8", "moe_quant_type": "w4w2", "quantization": "wint2", "moe_quant_config": { "moe_w4_quant_config": { "quant_type": "wint4", "quant_granularity": "per_channel", "quant_start_layer": 0, "quant_end_layer": 6 }, "moe_w2_quant_config": { "quant_type": "wint2", "quant_granularity": "pp_acc", "quant_group_size": 64, "quant_start_layer": 7, "quant_end_layer": 53 } } } ``` - For more deployment tutorials, please refer to [get_started](../get_started/ernie-4.5.md); - For more model descriptions, please refer to [Supported Model List](../supported_models.md). ## WINT2 Performance On the ERNIE-4.5-300B-A47B model, comparison of WINT2 vs WINT4 performance: | Test Set | Dataset Size | WINT4 | WINT2 | |---------|---------|---------|---------| | IFEval |500|88.17 | 85.40 | |BBH|6511|94.43|92.02| |DROP|9536|91.17|89.97| |GSM8K|1319|96.21|95.98| |CMath|600|96.50|96.00| |CMMLU|11477|89.92|86.22|