# PP-TinyPose C++部署示例 本目录下提供`pptinypose_infer.cc`快速完成PP-TinyPose在CPU/GPU,以及GPU上通过TensorRT加速部署的`单图单人关键点检测`示例 >> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测,因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../det_keypoint_unite/cpp/README.md) 在部署前,需确认以下两个步骤 - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md) 以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0) ```bash mkdir build cd build # 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用 wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz tar xvf fastdeploy-linux-x64-x.x.x.tgz cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x make -j # 下载PP-TinyPose模型文件和测试图片 wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz tar -xvf PP_TinyPose_256x192_infer.tgz wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg # CPU推理 ./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 0 # GPU推理 ./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 1 # GPU上TensorRT推理 ./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 2 ``` 运行完成可视化结果如下图所示
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考: - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md) ## PP-TinyPose C++接口 ### PP-TinyPose类 ```c++ fastdeploy::vision::keypointdetection::PPTinyPose( const string& model_file, const string& params_file = "", const string& config_file, const RuntimeOption& runtime_option = RuntimeOption(), const ModelFormat& model_format = ModelFormat::PADDLE) ``` PPTinyPose模型加载和初始化,其中model_file为导出的Paddle模型格式。 **参数** > * **model_file**(str): 模型文件路径 > * **params_file**(str): 参数文件路径 > * **config_file**(str): 推理部署配置文件 > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 > * **model_format**(ModelFormat): 模型格式,默认为Paddle格式 #### Predict函数 > ```c++ > PPTinyPose::Predict(cv::Mat* im, KeyPointDetectionResult* result) > ``` > > 模型预测接口,输入图像直接输出关键点检测结果。 > > **参数** > > > * **im**: 输入图像,注意需为HWC,BGR格式 > > * **result**: 关键点检测结果,包括关键点的坐标以及关键点对应的概率值, KeyPointDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/) ### 类成员属性 #### 后处理参数 > > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278) - [模型介绍](../../) - [Python部署](../python) - [视觉模型预测结果](../../../../../docs/api/vision_results/) - [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)