""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import math from typing import Optional, Union import numpy as np def sample_frames( frame_factor: int, min_frames: int, max_frames: int, metadata: Optional[dict] = None, fps: Optional[Union[int, float]] = None, num_frames: Optional[int] = None, ): """ Sample frames from video according to specified criteria. Args: frame_factor: Ensure sampled frames are multiples of this factor min_frames: Minimum number of frames to sample max_frames: Maximum number of frames to sample metadata: Video metadata containing fps information fps: Target frames per second for sampling num_frames: Exact number of frames to sample Returns: np.ndarray: Sampled video frames Raises: ValueError: If both fps and num_frames are specified, or if required metadata is missing, or if requested frames exceed available frames """ if fps > 0 and num_frames > 0: raise ValueError("`num_frames` and `fps` are mutually exclusive arguments, please use only one!") total_num_frames = metadata["num_of_frame"] # If num_frames is not given but fps is, calculate num_frames from fps if num_frames > 0: num_frames = round(num_frames / frame_factor) * frame_factor elif fps > 0: if metadata is None: raise ValueError( "Asked to sample `fps` frames per second but no video metadata was provided which is required when sampling with `fps`. " "Please pass in `VideoMetadata` object or use a fixed `num_frames` per input video" ) max_frames = math.floor(min(max_frames, total_num_frames) / frame_factor) * frame_factor num_frames = total_num_frames / metadata["fps"] * fps num_frames = min(min(max(num_frames, min_frames), max_frames), total_num_frames) num_frames = math.floor(num_frames / frame_factor) * frame_factor if num_frames > total_num_frames: raise ValueError( f"Video can't be sampled. The inferred `num_frames={num_frames}` exceeds `total_num_frames={total_num_frames}`. " "Decrease `num_frames` or `fps` for sampling." ) # Calculate frame indices based on sampling strategy if num_frames > 0: # Evenly spaced sampling for target frame count indices = np.arange(0, total_num_frames, total_num_frames / num_frames).astype(np.int32) else: # Keep all frames if no sampling requested indices = np.arange(0, total_num_frames).astype(np.int32) return indices