import cv2 import os import fastdeploy as fd def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument("--model", required=True, help="Name of the model.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() if args.device.lower() == "gpu": option.use_gpu() else: option.set_paddle_mkldnn(False) return option args = parse_arguments() # 配置runtime,加载模型 runtime_option = build_option(args) fd.download_model(name=args.model, path='./', format='paddle') model_file = os.path.join(args.model, "model.pdmodel") params_file = os.path.join(args.model, "model.pdiparams") model = fd.vision.generation.AnimeGAN( model_file, params_file, runtime_option=runtime_option) # 预测图片并保存结果 im = cv2.imread(args.image) result = model.predict(im) cv2.imwrite('style_transfer_result.png', result)