""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from collections.abc import Sequence from typing import Optional, Union from fastdeploy.entrypoints.openai.protocol import (ChatCompletionRequest, DeltaMessage) from fastdeploy.reasoning import ReasoningParser, ReasoningParserManager @ReasoningParserManager.register_module("qwen3") class Qwen3ReasoningParser(ReasoningParser): """ Reasoning parser for ernir_vl model. The ernie_vl model uses ...... tokens to denote reasoning text within its output. The model provides a strict switch to disable reasoning output via the 'enable_thinking=False' parameter. This parser extracts the reasoning content enclosed by and tokens from the model's output. """ def __init__(self, tokenizer): super().__init__(tokenizer) self.think_start_token = "" self.think_end_token = "" if not self.model_tokenizer: raise ValueError( "The model tokenizer must be passed to the ReasoningParser " "constructor during construction.") self.think_start_token_id = self.vocab.get(self.think_start_token) self.think_end_token_id = self.vocab.get(self.think_end_token) if self.think_end_token_id is None: raise RuntimeError( "Qwen3 reasoning parser could not locate think end " "tokens in the tokenizer!") def extract_reasoning_content_streaming( self, previous_text: str, current_text: str, delta_text: str, previous_token_ids: Sequence[int], current_token_ids: Sequence[int], delta_token_ids: Sequence[int], ) -> Union[DeltaMessage, None]: """ Extract reasoning content from a delta message. Handles streaming output where previous + delta = current. Uses token IDs for faster processing. For text abcxyz: - 'abc' goes to reasoning_content - 'xyz' goes to content """ # Skip single special tokens if len(delta_token_ids) == 1 and (delta_token_ids[0] in [ self.think_start_token_id, self.think_end_token_id ]): return "", "" if self.think_start_token_id in previous_token_ids: if self.think_end_token_id in delta_token_ids: # in previous, in delta, # extract reasoning content end_index = delta_text.find(self.think_end_token) reasoning_content = delta_text[:end_index] content = delta_text[end_index + len(self.think_end_token):] content = content if content else None return reasoning_content, content elif self.think_end_token_id in previous_token_ids: # in previous, in previous, # reasoning content continues return "", delta_text else: # in previous, no in previous or delta, # reasoning content continues return delta_text, "" elif self.think_start_token_id in delta_token_ids: if self.think_end_token_id in delta_token_ids: # in delta, in delta, extract reasoning content start_index = delta_text.find(self.think_start_token) end_index = delta_text.find(self.think_end_token) reasoning_content = delta_text[start_index + len(self.think_start_token ):end_index] content = delta_text[end_index + len(self.think_end_token):] content = content if content else None return reasoning_content, content else: # in delta, no in delta, # reasoning content continues return delta_text, "" else: # thinking is disabled, just content return "", delta_text def extract_reasoning_content( self, model_output: str, request: ChatCompletionRequest ) -> tuple[Optional[str], Optional[str]]: """ Extract reasoning content from the model output. For text abcxyz: - 'abc' goes to reasoning_content - 'xyz' goes to content Returns: tuple[Optional[str], Optional[str]]: reasoning content and content """ # Check if the model output contains the and tokens. if (self.think_start_token not in model_output or self.think_end_token not in model_output): return None, model_output # Check if the is present in the model output, remove it # if it is present. model_output_parts = model_output.partition(self.think_start_token) model_output = model_output_parts[2] if model_output_parts[ 1] else model_output_parts[0] # Check if the model output contains the tokens. # If the end token is not found, return the model output as is. if self.think_end_token not in model_output: return None, model_output # Extract reasoning content from the model output. reasoning_content, _, content = model_output.partition( self.think_end_token) final_content = content or None return reasoning_content, final_content