# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.nn.functional as F from fastdeploy.model_executor.ops.gpu import group_swiglu_with_masked paddle.seed(2024) def group_swiglu_with_masked_paddle(fc1_out_tensor, token_nums_per_expert): group_num, group_size, hidden_dim_x2 = fc1_out_tensor.shape if token_nums_per_expert.dtype not in [paddle.int32, paddle.int64]: raise ValueError(f"token_nums_per_expert must be int32 or int64, but receive {token_nums_per_expert.dtype}") gate, up = paddle.chunk(fc1_out_tensor, chunks=2, axis=-1) act_out = (F.silu(gate.to(paddle.float32)) * up.to(paddle.float32)).to(fc1_out_tensor.dtype) # [0, 1, 2, ..., group_size-1] range_tensor = paddle.arange(group_size, dtype=token_nums_per_expert.dtype) mask = range_tensor < token_nums_per_expert.unsqueeze(1) mask = mask.unsqueeze(-1) output_tensor = act_out * mask.astype(act_out.dtype) return output_tensor class TestGroupSwigluWithMasked(unittest.TestCase): def get_input(self): self.token_nums_tensor = paddle.to_tensor([5, 8, 0, 3], dtype=self.token_nums_per_expert_dtype) self.input_tensor = paddle.randn([self.group_num, self.group_size, self.hidden_dim * 2], dtype="bfloat16") def setUp(self) -> None: self.group_num = 4 self.group_size = 8 self.hidden_dim = 16 # fc1_out_tensor.shape()[2] / 2 self.input_dtype = paddle.bfloat16 self.token_nums_per_expert_dtype = paddle.int64 self.get_input() def test_group_swiglu_with_masked(self): paddle_output = group_swiglu_with_masked_paddle(self.input_tensor, self.token_nums_tensor) output = group_swiglu_with_masked(self.input_tensor, self.token_nums_tensor) valid_token_mask = paddle.arange( self.group_size, dtype=self.token_nums_per_expert_dtype ) < self.token_nums_tensor.unsqueeze(1) # Note(ooooo): Because GetEmptyTensor will random. np.testing.assert_allclose( paddle_output[valid_token_mask].astype("float32").numpy(), output[valid_token_mask].astype("float32").numpy(), ) class TestGroupSwigluWithMaskedCase1(TestGroupSwigluWithMasked): def setUp(self) -> None: self.group_num = 4 self.group_size = 8 self.hidden_dim = 16 # fc1_out_tensor.shape()[2] / 2 self.input_dtype = paddle.bfloat16 self.token_nums_per_expert_dtype = paddle.int32 self.get_input() class TestGroupSwigluWithMaskedCase2(TestGroupSwigluWithMasked): def setUp(self) -> None: self.group_num = 4 self.group_size = 8 self.hidden_dim = 16 # fc1_out_tensor.shape()[2] / 2 self.input_dtype = paddle.bfloat16 self.token_nums_per_expert_dtype = paddle.int32 self.get_input() def get_input(self): self.token_nums_tensor = paddle.randint( 0, self.group_size + 1, shape=[self.group_num], dtype=self.token_nums_per_expert_dtype ) self.input_tensor = paddle.randn( [self.group_num, self.group_size, self.hidden_dim * 2], dtype=self.input_dtype ) if __name__ == "__main__": unittest.main()