# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UT for air_top_p_sampling kernel""" import subprocess import unittest import numpy as np import paddle import fastdeploy.model_executor.ops.gpu class Test(unittest.TestCase): def setUp(self): """ Initialize. """ paddle.seed(2024) np.random.seed(42) print(paddle.device.cuda.get_device_properties()) print(paddle.__git_commit__) nvcc_output = subprocess.check_output(["nvcc", "--version"], universal_newlines=True) output = nvcc_output.split() release_idx = output.index("release") + 1 self.nvcc_cuda_version = float(output[release_idx].split(",")[0]) def test_air_top_p_sampling(self): """ Check air_top_p_sampling output with paddle.tensor.top_p_sampling. """ if self.nvcc_cuda_version < 12.0: self.skipTest("air_top_p_sampling only support cu12+") bsz = 8 vocab_size = 103424 x = paddle.randn([bsz, vocab_size]) x = paddle.nn.functional.softmax(x) x = paddle.cast(x, "float32") top_ps = paddle.to_tensor(np.random.uniform(0, 1, [bsz]).astype(np.float32)) _, next_tokens = fastdeploy.model_executor.ops.gpu.air_top_p_sampling( x.cuda(), top_ps.cuda(), None, None, seed=0, k=1, mode="truncated" ) print(next_tokens) less_than_zero = next_tokens >= 0 greater_than_vocab_size = next_tokens <= vocab_size accuracy = paddle.logical_and(less_than_zero, greater_than_vocab_size) print(f"Accuracy of results: {accuracy}") if __name__ == "__main__": unittest.main()