// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "helper.h" constexpr float epsilon = 1e-10; template __global__ void quant_per_token_per_block(const T *input, phi::dtype::float8_e4m3fn *quanted_res, float *quanted_scale, const int token_num, const int hidden_size, const int hidden_size_scale, const bool use_finegrained_range) { const int bid = blockIdx.x; const int tid = threadIdx.x; const int warp_id = tid / 32; const int lane_id = tid % 32; const int num_warp = blockDim.x / 32; static constexpr int NUM_PER_THREADS = 128 / 32; // 4 static constexpr float MAX_VALUE = 448.f; const int end_iter = hidden_size / 128; // warp_iter_num AlignedVector load_vec; AlignedVector load_vec_float; AlignedVector res_vec; for (int token_idx = bid; token_idx < token_num; token_idx += gridDim.x) { const T *input_now = input + token_idx * hidden_size; phi::dtype::float8_e4m3fn *quanted_res_now = quanted_res + token_idx * hidden_size; float *quanted_scale_now = quanted_scale + token_idx * hidden_size_scale; // deal a block per warp for (int iter = warp_id; iter < end_iter; iter += num_warp) { const int start_offset = iter * 128; Load(input_now + start_offset + lane_id * NUM_PER_THREADS, &load_vec); // get max value per thread float max_value_thread = -5e4; #pragma unroll for (int vid = 0; vid < NUM_PER_THREADS; vid++) { load_vec_float[vid] = static_cast(load_vec[vid]); max_value_thread = max(abs(load_vec_float[vid]), max_value_thread); } // get max value per warp max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 16), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 8), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 4), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 2), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 1), max_value_thread); // broadcast max_value max_value_thread = __shfl_sync(0xFFFFFFFF, max_value_thread, 0); max_value_thread = max(max_value_thread, epsilon); if (use_finegrained_range) { max_value_thread *= 7.0f; } float scale_to_store = max_value_thread / MAX_VALUE; // quant #pragma unroll for (int vid = 0; vid < NUM_PER_THREADS; vid++) { res_vec[vid] = static_cast(load_vec_float[vid] * MAX_VALUE / max_value_thread); } // store Store(res_vec, quanted_res_now + start_offset + lane_id * NUM_PER_THREADS); if (lane_id == 0) { quanted_scale_now[iter] = scale_to_store; } } } } std::vector PerTokenQuant(paddle::Tensor& input, const int block_size) { auto input_dim = input.dims(); const int token_num = input_dim[0]; const int hidden_size = input_dim[1]; const int hidden_size_scale = hidden_size / block_size; auto quanted_x = GetEmptyTensor( {token_num, hidden_size}, paddle::DataType::FLOAT8_E4M3FN, input.place()); auto quanted_scale = GetEmptyTensor( {token_num, hidden_size_scale}, paddle::DataType::FLOAT32, input.place()); const int gridx = min(132 * 8, token_num); const int blockx = min(1024, hidden_size / 128 * 32); bool use_finegrained_range = false; char *env_var = getenv("PER_TOKEN_QUANT_FP8_USE_FINEGRAINED_RANGE"); if (env_var) { use_finegrained_range = static_cast(std::stoi(env_var)); } switch (input.dtype()) { case paddle::DataType::BFLOAT16: quant_per_token_per_block<<>>( input.data(), quanted_x.data(), quanted_scale.data(), token_num, hidden_size, hidden_size_scale, use_finegrained_range ); break; case paddle::DataType::FLOAT16: quant_per_token_per_block<<>>( input.data(), quanted_x.data(), quanted_scale.data(), token_num, hidden_size, hidden_size_scale, use_finegrained_range ); break; default: PD_THROW("Unsupported data type for PerTokenQuant"); } return {quanted_x, quanted_scale}; } template __global__ void quant_per_token_per_block_padding(const T *input, phi::dtype::float8_e4m3fn *quanted_res, float *quanted_scale, const int token_num, const int padded_token_num, const int hidden_size, const int hidden_size_scale, const bool use_finegrained_range) { const int bid = blockIdx.x; const int tid = threadIdx.x; const int warp_id = tid / 32; const int lane_id = tid % 32; const int num_warp = blockDim.x / 32; static constexpr int NUM_PER_THREADS = 128 / 32; // 4 static constexpr float MAX_VALUE = 448.f; const int end_iter = hidden_size / 128; // warp_iter_num AlignedVector load_vec; AlignedVector load_vec_float; AlignedVector res_vec; for (int token_idx = bid; token_idx < token_num; token_idx += gridDim.x) { const T *input_now = input + token_idx * hidden_size; phi::dtype::float8_e4m3fn *quanted_res_now = quanted_res + token_idx * hidden_size; // deal a block per warp for (int iter = warp_id; iter < end_iter; iter += num_warp) { float *quanted_scale_now = quanted_scale + iter * padded_token_num + token_idx; const int start_offset = iter * 128; Load(input_now + start_offset + lane_id * NUM_PER_THREADS, &load_vec); // get max value per thread float max_value_thread = -5e4; #pragma unroll for (int vid = 0; vid < NUM_PER_THREADS; vid++) { load_vec_float[vid] = static_cast(load_vec[vid]); max_value_thread = max(abs(load_vec_float[vid]), max_value_thread); } // get max value per warp max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 16), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 8), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 4), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 2), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 1), max_value_thread); // broadcast max_value max_value_thread = __shfl_sync(0xFFFFFFFF, max_value_thread, 0); max_value_thread = max(max_value_thread, epsilon); if (use_finegrained_range) { max_value_thread *= 7.0f; } float scale_to_store = max_value_thread / MAX_VALUE; // quant #pragma unroll for (int vid = 0; vid < NUM_PER_THREADS; vid++) { res_vec[vid] = static_cast(load_vec_float[vid] * MAX_VALUE / max_value_thread); } // store Store(res_vec, quanted_res_now + start_offset + lane_id * NUM_PER_THREADS); if (lane_id == 0) { *quanted_scale_now = scale_to_store; } } } } std::vector PerTokenQuantPadding(paddle::Tensor& input, const int block_size) { using ScaleDtype = float; auto input_dim = input.dims(); const int token_num = input_dim[0]; const int hidden_size = input_dim[1]; const int hidden_size_scale = hidden_size / block_size; auto quanted_x = GetEmptyTensor( {token_num, hidden_size}, paddle::DataType::FLOAT8_E4M3FN, input.place()); const int tma_alignment_bytes = 16; const int tma_alignment_elements = tma_alignment_bytes / sizeof(ScaleDtype); const int padded_token_num = ((token_num + tma_alignment_elements - 1) / tma_alignment_elements) * tma_alignment_elements; auto quanted_scale = GetEmptyTensor( {padded_token_num, hidden_size_scale}, {1, padded_token_num}, paddle::DataType::FLOAT32, input.place()); const int gridx = min(132 * 8, token_num); const int blockx = min(1024, hidden_size / 128 * 32); bool use_finegrained_range = false; char *env_var = getenv("PER_TOKEN_QUANT_FP8_USE_FINEGRAINED_RANGE"); if (env_var) { use_finegrained_range = static_cast(std::stoi(env_var)); } switch (input.dtype()) { case paddle::DataType::BFLOAT16: quant_per_token_per_block_padding<<>>( input.data(), quanted_x.data(), quanted_scale.data(), token_num, padded_token_num, hidden_size, hidden_size_scale, use_finegrained_range ); break; case paddle::DataType::FLOAT16: quant_per_token_per_block_padding<<>>( input.data(), quanted_x.data(), quanted_scale.data(), token_num, padded_token_num, hidden_size, hidden_size_scale, use_finegrained_range ); break; default: PD_THROW("Unsupported data type for PerTokenQuant"); } return {quanted_x, quanted_scale}; } template __global__ void masked_quant_per_token_per_block(const T *input, const int* recv_expert_count, phi::dtype::float8_e4m3fn *quanted_res, float *quanted_scale, const int token_num, const int hidden_size, const int hidden_size_scale, const int num_max_tokens_per_expert, const bool use_finegrained_range) { const int bid = blockIdx.x; const int tid = threadIdx.x; const int warp_id = tid / 32; const int lane_id = tid % 32; const int num_warp = blockDim.x / 32; static constexpr int NUM_PER_THREADS = 128 / 32; // 4 static constexpr float MAX_VALUE = 448.f; const int end_iter = hidden_size / 128; // warp_iter_num AlignedVector load_vec; AlignedVector load_vec_float; AlignedVector res_vec; for (int token_idx = bid; token_idx < token_num; token_idx += gridDim.x) { const auto token_idx_in_expert = token_idx % num_max_tokens_per_expert; const auto expert_id = token_idx / num_max_tokens_per_expert; if (token_idx_in_expert >= recv_expert_count[expert_id]) { auto next_expert_start_idx = (expert_id + 1) * num_max_tokens_per_expert; auto num_iters_to_next_expert = (next_expert_start_idx - token_idx - 1) / gridDim.x; token_idx += num_iters_to_next_expert * gridDim.x; continue; } const T *input_now = input + token_idx * hidden_size; phi::dtype::float8_e4m3fn *quanted_res_now = quanted_res + token_idx * hidden_size; // deal a block per warp for (int iter = warp_id; iter < end_iter; iter += num_warp) { float *quanted_scale_now = quanted_scale + expert_id * hidden_size_scale * num_max_tokens_per_expert + iter * num_max_tokens_per_expert + token_idx_in_expert; const int start_offset = iter * 128; Load(input_now + start_offset + lane_id * NUM_PER_THREADS, &load_vec); // get max value per thread float max_value_thread = -5e4; #pragma unroll for (int vid = 0; vid < NUM_PER_THREADS; vid++) { load_vec_float[vid] = static_cast(load_vec[vid]); max_value_thread = max(abs(load_vec_float[vid]), max_value_thread); } // get max value per warp max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 16), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 8), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 4), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 2), max_value_thread); max_value_thread = max(__shfl_down_sync(0xffffffff, max_value_thread, 1), max_value_thread); // broadcast max_value max_value_thread = __shfl_sync(0xFFFFFFFF, max_value_thread, 0); max_value_thread = max(max_value_thread, epsilon); if (use_finegrained_range) { max_value_thread *= 7.0f; } float scale_to_store = max_value_thread / MAX_VALUE; // quant #pragma unroll for (int vid = 0; vid < NUM_PER_THREADS; vid++) { res_vec[vid] = static_cast(load_vec_float[vid] * MAX_VALUE / max_value_thread); } // store Store(res_vec, quanted_res_now + start_offset + lane_id * NUM_PER_THREADS); if (lane_id == 0) { *quanted_scale_now = scale_to_store; } } } } std::vector MaskedPerTokenQuant(paddle::Tensor& input, paddle::Tensor& recv_expert_count, const int block_size) { auto input_dim = input.dims(); const int num_local_expert = input_dim[0]; const int num_max_tokens_per_expert = input_dim[1]; const int hidden_size = input_dim[2]; const int hidden_size_scale = hidden_size / block_size; const int token_num = num_local_expert * num_max_tokens_per_expert; auto quanted_x = GetEmptyTensor( {num_local_expert, num_max_tokens_per_expert, hidden_size}, paddle::DataType::FLOAT8_E4M3FN, input.place()); auto quanted_scale = GetEmptyTensor( {num_local_expert, num_max_tokens_per_expert, hidden_size_scale}, {hidden_size_scale * num_max_tokens_per_expert, 1, num_max_tokens_per_expert}, paddle::DataType::FLOAT32, input.place()); const int gridx = min(132 * 2, token_num); const int blockx = min(1024, hidden_size / 128 * 32); bool use_finegrained_range = false; char *env_var = getenv("PER_TOKEN_QUANT_FP8_USE_FINEGRAINED_RANGE"); if (env_var) { use_finegrained_range = static_cast(std::stoi(env_var)); } switch (input.dtype()) { case paddle::DataType::BFLOAT16: masked_quant_per_token_per_block<<>>( input.data(), recv_expert_count.data(), quanted_x.data(), quanted_scale.data(), token_num, hidden_size, hidden_size_scale, num_max_tokens_per_expert, use_finegrained_range ); break; case paddle::DataType::FLOAT16: masked_quant_per_token_per_block<<>>( input.data(), recv_expert_count.data(), quanted_x.data(), quanted_scale.data(), token_num, hidden_size, hidden_size_scale, num_max_tokens_per_expert, use_finegrained_range ); break; default: PD_THROW("Unsupported data type for PerTokenQuant"); } return {quanted_x, quanted_scale}; } PD_BUILD_STATIC_OP(per_token_quant) .Inputs({"input"}) .Outputs({"output", "output_scale"}) .Attrs({"block_size: int"}) .SetKernelFn(PD_KERNEL(PerTokenQuant)); PD_BUILD_STATIC_OP(per_token_quant_padding) .Inputs({"input"}) .Outputs({"output", "output_scale"}) .Attrs({"block_size: int"}) .SetKernelFn(PD_KERNEL(PerTokenQuantPadding)); PD_BUILD_STATIC_OP(masked_per_token_quant) .Inputs({"input", "recv_expert_count"}) .Outputs({"output", "output_scale"}) .Attrs({"block_size: int"}) .SetKernelFn(PD_KERNEL(MaskedPerTokenQuant));