import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--model", required=True, help="Path of PaddleSeg model.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'xpu', 'cpu' or 'gpu'.") parser.add_argument( "--use_trt", type=ast.literal_eval, default=False, help="Wether to use tensorrt.") return parser.parse_args() def build_option(args): option = fd.RuntimeOption() if args.device.lower() == "gpu": option.use_gpu() if args.device.lower() == "xpu": option.use_xpu() if args.use_trt: option.use_trt_backend() option.set_trt_input_shape("x", [1, 3, 256, 256], [1, 3, 1024, 1024], [1, 3, 2048, 2048]) return option args = parse_arguments() # 配置runtime,加载模型 runtime_option = build_option(args) model_file = os.path.join(args.model, "model.pdmodel") params_file = os.path.join(args.model, "model.pdiparams") config_file = os.path.join(args.model, "deploy.yaml") model = fd.vision.segmentation.PaddleSegModel( model_file, params_file, config_file, runtime_option=runtime_option) # 预测图片分割结果 im = cv2.imread(args.image) result = model.predict(im) print(result) # 可视化结果 vis_im = fd.vision.vis_segmentation(im, result, weight=0.5) cv2.imwrite("vis_img.png", vis_im)