// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "fastdeploy/vision/common/processors/manager.h" #include "fastdeploy/vision/common/processors/transform.h" #include "fastdeploy/vision/common/result.h" namespace fastdeploy { namespace vision { namespace perception { /*! @brief Preprocessor object for Petr serials model. */ class FASTDEPLOY_DECL PetrPreprocessor : public ProcessorManager { public: PetrPreprocessor() = default; /** \brief Create a preprocessor instance for Petr model * * \param[in] config_file Path of configuration file for deployment, e.g smoke/infer_cfg.yml */ explicit PetrPreprocessor(const std::string& config_file); /** \brief Process the input image and prepare input tensors for runtime * * \param[in] images The input image data list, all the elements are returned by cv::imread() * \param[in] outputs The output tensors which will feed in runtime * \param[in] ims_info The shape info list, record input_shape and output_shape * \return true if the preprocess successed, otherwise false */ bool Apply(FDMatBatch* image_batch, std::vector* outputs); protected: bool BuildPreprocessPipelineFromConfig(); std::vector> processors_; bool disable_permute_ = false; bool initialized_ = false; std::string config_file_; float scale_ = 1.0f; std::vector mean_; std::vector std_; std::vector input_k_data_{ -1.40307297e-03, 9.07780395e-06, 4.84838307e-01, -5.43047376e-02, -1.40780103e-04, 1.25770375e-05, 1.04126692e+00, 7.67668605e-01, -1.02884378e-05, -1.41007011e-03, 1.02823459e-01, -3.07415128e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, -9.39000631e-04, -7.65239349e-07, 1.14073277e+00, 4.46270645e-01, 1.04998052e-03, 1.91798881e-05, 2.06218868e-01, 7.42717385e-01, 1.48074005e-05, -1.40855671e-03, 7.45946690e-02, -3.16081315e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, -7.0699735e-04, 4.2389297e-07, -5.5183989e-01, -5.3276348e-01, -1.2281288e-03, 2.5626015e-05, 1.0212017e+00, 6.1102939e-01, -2.2421273e-05, -1.4170362e-03, 9.3639769e-02, -3.0863306e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 2.2227580e-03, 2.5312484e-06, -9.7261822e-01, 9.0684637e-02, 1.9360810e-04, 2.1347081e-05, -1.0779887e+00, -7.9227984e-01, 4.3742721e-06, -2.2310747e-03, 1.0842450e-01, -2.9406491e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 5.97175560e-04, -5.88774265e-06, -1.15893924e+00, -4.49921310e-01, -1.28312141e-03, 3.58297058e-07, 1.48300052e-01, 1.14334166e-01, -2.80917516e-06, -1.41527120e-03, 8.37693438e-02, -2.36765608e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 3.6048229e-04, 3.8333174e-06, 7.9871160e-01, 4.3321830e-01, 1.3671946e-03, 6.7484652e-06, -8.4722507e-01, 1.9411178e-01, 7.5027779e-06, -1.4139183e-03, 8.2083985e-02, -2.4505949e-01, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0000000e+00}; }; } // namespace perception } // namespace vision } // namespace fastdeploy