# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse parser = argparse.ArgumentParser() parser.add_argument( "--det_model", required=True, help="Path of Detection model of PPOCR.") parser.add_argument( "--rec_model", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--table_model", required=True, help="Path of Table recognition model of PPOCR.") parser.add_argument( "--rec_label_file", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--table_char_dict_path", type=str, required=True, help="tabel recognition dict path.") parser.add_argument( "--rec_bs", type=int, default=6, help="Recognition model inference batch size") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.") parser.add_argument( "--backend", type=str, default="default", help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu" ) return parser.parse_args() def build_option(args): det_option = fd.RuntimeOption() rec_option = fd.RuntimeOption() table_option = fd.RuntimeOption() if args.device.lower() == "gpu": det_option.use_gpu(args.device_id) rec_option.use_gpu(args.device_id) table_option.use_gpu(args.device_id) if args.backend.lower() == "trt": assert args.device.lower( ) == "gpu", "TensorRT backend require inference on device GPU." det_option.use_trt_backend() rec_option.use_trt_backend() table_option.use_trt_backend() # If use TRT backend, the dynamic shape will be set as follow. # We recommend that users set the length and height of the detection model to a multiple of 32. # We also recommend that users set the Trt input shape as follow. det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]) rec_option.set_trt_input_shape("x", [1, 3, 48, 10], [args.rec_bs, 3, 48, 320], [args.rec_bs, 3, 48, 2304]) table_option.set_trt_input_shape("x", [1, 3, 488, 488]) # Users could save TRT cache file to disk as follow. det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt") rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt") table_option.set_trt_cache_file(args.table_model + "/table_trt_cache.trt") elif args.backend.lower() == "ort": det_option.use_ort_backend() rec_option.use_ort_backend() table_option.use_ort_backend() elif args.backend.lower() == "paddle": det_option.use_paddle_infer_backend() rec_option.use_paddle_infer_backend() table_option.use_paddle_infer_backend() elif args.backend.lower() == "openvino": assert args.device.lower( ) == "cpu", "OpenVINO backend require inference on device CPU." det_option.use_openvino_backend() rec_option.use_openvino_backend() table_option.use_openvino_backend() return det_option, rec_option, table_option args = parse_arguments() det_model_file = os.path.join(args.det_model, "inference.pdmodel") det_params_file = os.path.join(args.det_model, "inference.pdiparams") rec_model_file = os.path.join(args.rec_model, "inference.pdmodel") rec_params_file = os.path.join(args.rec_model, "inference.pdiparams") rec_label_file = args.rec_label_file table_model_file = os.path.join(args.table_model, "inference.pdmodel") table_params_file = os.path.join(args.table_model, "inference.pdiparams") table_char_dict_path = args.table_char_dict_path # Set the runtime option det_option, rec_option, table_option = build_option(args) det_model = fd.vision.ocr.DBDetector( det_model_file, det_params_file, runtime_option=det_option) rec_model = fd.vision.ocr.Recognizer( rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option) table_model = fd.vision.ocr.StructureV2Table( table_model_file, table_params_file, table_char_dict_path, runtime_option=table_option) det_model.preprocessor.max_side_len = 960 det_model.postprocessor.det_db_thresh = 0.3 det_model.postprocessor.det_db_box_thresh = 0.6 det_model.postprocessor.det_db_unclip_ratio = 1.5 det_model.postprocessor.det_db_score_mode = "slow" det_model.postprocessor.use_dilation = False ppstructurev2_table = fd.vision.ocr.PPStructureV2Table( det_model=det_model, rec_model=rec_model, table_model=table_model) ppstructurev2_table.rec_batch_size = args.rec_bs # Read the input image im = cv2.imread(args.image) # Predict and reutrn the results result = ppstructurev2_table.predict(im) print(result) # Visuliaze the results. vis_im = fd.vision.vis_ppocr(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")